We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Newly Developed Compound Protects Heart Cells During and After Infarction

By LabMedica International staff writers
Posted on 18 Feb 2013
Using two recently developed diverse compounds, scientists have been able to show in animal models that suppressing a specific enzyme protects heart cells and neighboring tissue against the debilitating injury incurred by heart attacks. More...
The compounds also protect against additional damage from restored blood flow after an attack, a process known as reperfusion.

The study, which was led by Dr. Philip LoGrasso, a professor and senior scientific director of discovery biology at the Florida campus of The Scripps Research Institute (TSRI; Jupiter, USA), was published in the February 8, 2013, print edition of the Journal of Biological Chemistry.

A myocardial infarction greatly restricts blood supply, starving heart cells and neighboring tissue of oxygen, which can cause enormous damage in comparatively little time—at times in just a few minutes. This decrease in oxygen, known as an ischemic cascade, results in a sudden crush of metabolic waste that damages cell membranes as well as the mitochondria.

Restoring blood flow adds considerably to the damage, unfortunately, a serious medical issue when it comes to treating major ischemic events such as stroke and heart attack. Reperfusion triggers generation of free radicals and reactive oxygen species that attack and damage cells, intensifying inflammation, signaling white blood cells to attack otherwise salvageable cells and maybe even stimulating potentially lethal cardiac arrhythmias.

The new study revealed that inhibiting the enzyme, c-jun-N-terminal kinase (JNK; pronounced junk), protected against ischemic/reperfusion injury in lab rodents, reducing the total volume of tissue death by as much as 34%. It also substantially decreased levels of reactive oxygen species and mitochondrial dysfunction.

In earlier studies, TSRI scientists discovered that JNK migrates to the mitochondria upon oxidative stress. That migration, combined with JNK activation, they found, is associated with a number of severe health issues, including liver damage, neuronal cell death, stroke, and heart attack. The peptide and small molecule inhibitor (SR3306), developed by Dr. LoGrasso and his colleagues, blocks those harmful effects, thereby reducing programmed cell death four-fold.

“This is the same story,” said Dr. LoGrasso. “These just happen to be heart cells, but we know that oxidative stress kills cells, and JNK inhibition protects against this stress. Blocking the translocation of JNK to the mitochondria is essential for stopping this killing cascade and may be an effective treatment for damage done to heart cells during an ischemic/reperfusion event.”

Moreover, according to Dr. LoGrasso, biomarkers that intensify during a heart attack decrease in the presence of JNK inhibition, a distinct indication that blocking JNK reduces the severity of the infarction.

Related Links:

The Scripps Research Institute




Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Portable Electronic Pipette
Mini 96
New
ESR Analyzer
TEST1 2.0
New
Blood Glucose Test Strip
AutoSense Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Left is the original cell image and right is same cell image zoomed in and rendered in the special imaging software (Photo courtesy of FIU)

Brain Inflammation Biomarker Detects Alzheimer’s Years Before Symptoms Appear

Alzheimer’s disease affects millions globally, but patients are often diagnosed only after memory loss and other symptoms appear, when brain damage is already extensive. Detecting the disease much earlier... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.