We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




3-Photon Microscopy Breaks Depth Limit of Current Biological Tissue Imaging

By LabMedica International staff writers
Posted on 07 Feb 2013
In a proof-of-concept study of a live mammalian brain, scientists have now shown that 3-photon microscopy enables high-resolution, noninvasive in vivo imaging at unprecedented depths of complex biological tissue, breaking the fundamental depth limit of standard 2-photon microscopy.

The team of scientists, at Cornell University (Ithaca, NY, USA), have demonstrated a three-fold improvement in the depth limit of fluorescence-based biological tissue imaging over the widely used 2-photon microscopy (2PM) based technology (invented at Cornell in 1990). More...
Tissue scattering limits the maximum imaging depth of 2PM to the cortical layer of the mouse brain, and imaging subcortical structures currently requires the removal of overlying brain tissue or the insertion of optical probes. Senior investigator Chris Xu, associate professor of applied and engineering physics, and colleagues have now demonstrated high-resolution, 3D imaging of the subcortical region of a live, intact mouse brain using 3-photon microscopy (3PM) based imaging technology (invented at Cornell in 1995).

The study, published online January 20, 2013, in the journal Nature Photonics, describes 3-photon fluorescence combined with a longer excitation wavelength of the laser pulse to overcome obstacles such as tissue scattering and absorption, which have prohibited high-resolution imaging deep within biological tissues. Dyes and transgenic mice were used to test the 3PM on different fluorescent signals. Using the live mouse brain model, the researchers have proved the principle of 3PM operating at a wavelength of 1,700 nanometers and this, in combination with the new laser developed specifically for 3-photon excitation, allowed for the high-resolution imaging at unprecedented depths within the brain—vascular structures as well as neurons within the mouse hippocampus were imaged.

"With MRI, we can see the whole brain but not with the resolution we have demonstrated. The optical resolution is about 100 to 1,000 times higher and allows us to clearly visualize individual neurons," said Prof. Xu. Pushing these depth limits is important for basic science and could also prove useful clinically, Prof. Xu noted. Depression and diseases like Parkinson's and Alzheimer's are associated with changes deep inside the brain, and finding the cures could be helped by subcortical neural imaging—below the gray matter, into the white matter and beyond, if the brain is visualized as stacked layers. If 3-photon microscopy can be used to map the entire brain, it could pave the way to new breakthroughs in neuroscience as well as other clinically relevant areas.

Related Links:

Cornell University



Gold Member
Veterinary Hematology Analyzer
Exigo H400
Serological Pipet Controller
PIPETBOY GENIUS
New
Celiac Disease Test
Anti-Gliadin IgG ELISA
New
Automated PCR Setup
ESTREAM
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: The RNA-seq based diagnostic test for pediatric leukemia ensures better outcomes for children with this common cancer (Photo courtesy of Qlucore)

RNA-Seq Based Diagnostic Test Enhances Diagnostic Accuracy of Pediatric Leukemia

A new unique test is set to reshape the way Acute Lymphoblastic Leukemia (BCP-ALL) samples can be analyzed. Qlucore (Lund, Sweden) has launched the first CE-marked RNA-seq based diagnostic test for pediatric... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.