We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




3-Photon Microscopy Breaks Depth Limit of Current Biological Tissue Imaging

By LabMedica International staff writers
Posted on 07 Feb 2013
In a proof-of-concept study of a live mammalian brain, scientists have now shown that 3-photon microscopy enables high-resolution, noninvasive in vivo imaging at unprecedented depths of complex biological tissue, breaking the fundamental depth limit of standard 2-photon microscopy.

The team of scientists, at Cornell University (Ithaca, NY, USA), have demonstrated a three-fold improvement in the depth limit of fluorescence-based biological tissue imaging over the widely used 2-photon microscopy (2PM) based technology (invented at Cornell in 1990). More...
Tissue scattering limits the maximum imaging depth of 2PM to the cortical layer of the mouse brain, and imaging subcortical structures currently requires the removal of overlying brain tissue or the insertion of optical probes. Senior investigator Chris Xu, associate professor of applied and engineering physics, and colleagues have now demonstrated high-resolution, 3D imaging of the subcortical region of a live, intact mouse brain using 3-photon microscopy (3PM) based imaging technology (invented at Cornell in 1995).

The study, published online January 20, 2013, in the journal Nature Photonics, describes 3-photon fluorescence combined with a longer excitation wavelength of the laser pulse to overcome obstacles such as tissue scattering and absorption, which have prohibited high-resolution imaging deep within biological tissues. Dyes and transgenic mice were used to test the 3PM on different fluorescent signals. Using the live mouse brain model, the researchers have proved the principle of 3PM operating at a wavelength of 1,700 nanometers and this, in combination with the new laser developed specifically for 3-photon excitation, allowed for the high-resolution imaging at unprecedented depths within the brain—vascular structures as well as neurons within the mouse hippocampus were imaged.

"With MRI, we can see the whole brain but not with the resolution we have demonstrated. The optical resolution is about 100 to 1,000 times higher and allows us to clearly visualize individual neurons," said Prof. Xu. Pushing these depth limits is important for basic science and could also prove useful clinically, Prof. Xu noted. Depression and diseases like Parkinson's and Alzheimer's are associated with changes deep inside the brain, and finding the cures could be helped by subcortical neural imaging—below the gray matter, into the white matter and beyond, if the brain is visualized as stacked layers. If 3-photon microscopy can be used to map the entire brain, it could pave the way to new breakthroughs in neuroscience as well as other clinically relevant areas.

Related Links:

Cornell University



New
Gold Member
Hematology Analyzer
Medonic M32B
Collection and Transport System
PurSafe Plus®
New
Automatic Chemiluminescence Immunoassay Analyzer
Shine i2000
New
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The study has linked blood proteins to Alzheimer’s disease and memory loss (Photo courtesy of Shutterstock)

Blood Test Could Detect Proteins Linked to Alzheimer's Disease and Memory Loss

Alzheimer’s disease has long been associated with sticky amyloid plaques in the brain, but these markers alone do not fully explain the memory loss and cognitive decline patients experience.... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.