We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




3-Photon Microscopy Breaks Depth Limit of Current Biological Tissue Imaging

By LabMedica International staff writers
Posted on 07 Feb 2013
In a proof-of-concept study of a live mammalian brain, scientists have now shown that 3-photon microscopy enables high-resolution, noninvasive in vivo imaging at unprecedented depths of complex biological tissue, breaking the fundamental depth limit of standard 2-photon microscopy.

The team of scientists, at Cornell University (Ithaca, NY, USA), have demonstrated a three-fold improvement in the depth limit of fluorescence-based biological tissue imaging over the widely used 2-photon microscopy (2PM) based technology (invented at Cornell in 1990). More...
Tissue scattering limits the maximum imaging depth of 2PM to the cortical layer of the mouse brain, and imaging subcortical structures currently requires the removal of overlying brain tissue or the insertion of optical probes. Senior investigator Chris Xu, associate professor of applied and engineering physics, and colleagues have now demonstrated high-resolution, 3D imaging of the subcortical region of a live, intact mouse brain using 3-photon microscopy (3PM) based imaging technology (invented at Cornell in 1995).

The study, published online January 20, 2013, in the journal Nature Photonics, describes 3-photon fluorescence combined with a longer excitation wavelength of the laser pulse to overcome obstacles such as tissue scattering and absorption, which have prohibited high-resolution imaging deep within biological tissues. Dyes and transgenic mice were used to test the 3PM on different fluorescent signals. Using the live mouse brain model, the researchers have proved the principle of 3PM operating at a wavelength of 1,700 nanometers and this, in combination with the new laser developed specifically for 3-photon excitation, allowed for the high-resolution imaging at unprecedented depths within the brain—vascular structures as well as neurons within the mouse hippocampus were imaged.

"With MRI, we can see the whole brain but not with the resolution we have demonstrated. The optical resolution is about 100 to 1,000 times higher and allows us to clearly visualize individual neurons," said Prof. Xu. Pushing these depth limits is important for basic science and could also prove useful clinically, Prof. Xu noted. Depression and diseases like Parkinson's and Alzheimer's are associated with changes deep inside the brain, and finding the cures could be helped by subcortical neural imaging—below the gray matter, into the white matter and beyond, if the brain is visualized as stacked layers. If 3-photon microscopy can be used to map the entire brain, it could pave the way to new breakthroughs in neuroscience as well as other clinically relevant areas.

Related Links:

Cornell University



Gold Member
Hematology Analyzer
Medonic M32B
Collection and Transport System
PurSafe Plus®
Hemodynamic System Monitor
OptoMonitor
New
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.