We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Fluorescent Protein Improves Sensitivity of Cellular Imaging

By LabMedica International staff writers
Posted on 26 Mar 2012
The sensitivity of high-resolution live cell imaging has now been much improved by mTurquoise2, a newly designed variant protein that emits turquoise light more efficiently than the popular, but only modestly bright, Enhanced Cyan Fluorescent Protein (ECFP).

Cyan Fluorescent Proteins (CFPs) have long suffered from a weak fluorescence level, generally converting merely 36% of the incoming blue into cyan light. More...
In a study published on March 20, 2012, in the journal Nature Communications, scientists developed and applied a highly specialized strategy involving rationalized, stepwise improvements on ECFP, itself an improved, cyan color variant of Green Fluorescent Protein originally cloned from Aequorea victoria.

As the first step toward achieving the higher brightness and with it improved sensitivity for fluorescent imaging, highly brilliant X-ray beams were used to uncovered subtle details of how CFPs store incoming energy and retransmit it as fluorescent light: they produced tiny crystals of many different improved CFPs and resolved their molecular structures. These structures revealed a subtle process near the so-called chromophore, the light-emitting complex inside the CFPs, whose fluorescence efficiency could be modulated by the environment.

“We could understand the function of individual atoms within CFPs and pinpoint the part of the molecule that needed to be modified to increase the fluorescence yield,” says David von Stetten from the team at the European Synchrotron Radiation Facility (ESRF) (Grenoble, France).

In parallel to this work, the team at the van Leeuwenhoek Center for Advanced Microscopy, University of Amsterdam (The Netherlands) used an innovative screening technique to study hundreds of modified CFP molecules, measuring their fluorescence lifetimes under the microscope to identify which had improved properties.

The result of this rational design is the new CFP named mTurquoise2. By combining structural and cellular biology efforts, the researchers showed that mTurquoise2 has a fluorescence efficiency of 93%, unmatched for monomeric fluorescent proteins. The properties of mTurquoise2 makes it the preferable cyan variant of green fluorescent protein for long-term imaging and as donor for Förster resonance energy transfer to a yellow fluorescent protein.

Related Links:
European Synchrotron Radiation Facility (ESRF)
University of Amsterdam
University Joseph-Fourier



Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.