We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




High-Resolution Endoscope Reveals Single Cells

By LabMedica International staff writers
Posted on 10 Jan 2012
A versatile and robust nanowire-based optical probe can provide high-resolution images of the interior of a single living cell, or precisely deliver genes, proteins, therapeutic drugs or other cargo without injuring or damaging the cell.

Researchers at the US Lawrence Berkeley National Laboratory (Berkeley, CA, USA) and the University of California (UC Berkeley; USA) created the novel endoscope by attaching a tin oxide nanowire waveguide to the tapered end of an optical fiber. More...
Light travelling along the optical fiber was effectively coupled into the nanowire, where it was reemitted into free space upon reaching the tip. The nanowire tip is extremely flexible, due to its small size and high aspect ratio, yet it can endure repeated bending and buckling so that it can be used multiple times. Another possible application of the system is biosensing and single-cell electrophysiology.

To test the nanowire endoscope as a local light source for subcellular imaging, the researchers optically coupled it to an excitation laser and guided blue light across the membrane and into the interiors of individual HeLa cells, the most commonly used immortalized human cell line for scientific research. Illuminating the intracellular environment of the cells with blue light using the nanoprobe did not harm the cells, since the illumination volume was at the pico-liter scale. Neither did the contact with the cell cytoplasm induce cell death, apoptosis, significant cellular stress, or membrane rupture. The study was published on December 18, 2011, in Nature Nanotechnology.

“By combining the advantages of nanowire waveguides and fiber-optic fluorescence imaging, we can manipulate light at the nanoscale inside living cells for studying biological processes within single living cells with high spatial and temporal resolution,” said lead author chemist Peidong Yang, PhD, of the Berkeley Lab's Materials Sciences Division. “We've shown that our nanowire-based endoscope can also detect optical signals from subcellular regions and, through light-activated mechanisms, can deliver payloads into cells with spatial and temporal specificity.”

Once the biocompatibility of the nanowire endoscope was demonstrated, the researchers tested the device’s capabilities for delivering payloads to specific sites inside a cell. To do so, they attached quantum dots to the tin oxide nanowire tip of the endoscope using photo-activated linkers that can be cleaved by low-power ultraviolet (UV) radiation. Within one minute, the functionalized nanowire endoscope was able to release its quantum dot cargo into targeted intracellular sites.

The directional blue laser light was then used to excite one of two quantum dot clusters that were located only two micrometers apart. With the tight illumination area and small separation between the light source and the dots, low background fluorescence and high imaging contrast were ensured; the photo activation to release the dots had no significant effect on cell viability.

Related Links:
Lawrence Berkeley National Laboratory
University of California



Gold Member
Serological Pipets
INTEGRA Serological Pipets
Portable Electronic Pipette
Mini 96
New
Human Estradiol Assay
Human Estradiol CLIA Kit
New
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The nanotechnology-based liquid biopsy test could identify cancer at its early stages (Photo courtesy of 123RF)

2-Hour Cancer Blood Test to Transform Tumor Detection

Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.