We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Cancer Cells’ DNA Repair Disrupted to Increase Radiation Sensitivity

By LabMedica International staff writers
Posted on 14 Dec 2011
Shortening end caps on chromosomes in human cervical cancer cells disrupts DNA repair signaling, increases the cells’ sensitivity to radiation treatment, and destroys them more rapidly, according to new findings. More...


The scientists involved in the study hope to see their laboratory findings, published December 5, 2011, print edition of the journal Cancer Prevention Research, lead to safer, more effective combination therapies for hard-to-treat pediatric brain cancers such as medulloblastoma and high-grade gliomas. To achieve this, they are beginning laboratory tests on brain cancer cells.

“Children with pediatric brain cancers don’t have very many options because progress to find new treatments has been limited the last 30 years,” said Rachid Drissi, PhD, lead investigator on the study and a researcher in the division of oncology from Cincinnati Children’s Hospital Medical Center (OH, USA). “The ability to make cancer cells more sensitive to radiation could allow physicians to use lower radiation doses to lessen side effects. Too many children with brain cancer can develop disabilities or die from treatment.”

Before treating cells with ionizing radiation, the researchers blocked an enzyme called telomerase, found in over 90% of cancer cells but scarcely detectable in most normal human cells. In cancer cells, telomerase helps maintain the length of caps on the ends of chromosomes called telomeres. This helps cancer cells replicate indefinitely, grow, and metastasize, according to Dr. Drissi.

In normal cells lacking the telomerase enzyme, telomeres get shorter each time cells divide. They continue doing so until normal cells stop dividing, reaching a condition called senescence. If this first cell-cycle “stop sign” is bypassed, cells continue dividing until telomeres become critically short and reach a second stopping point, when most cells die. In rare instances, cells sidestep this second “stop sign” and survive. This survival is frequently associated with telomerase activation and the onset of cancer.

This was the foundation for the research Dr. Drissi and his colleagues conducted to compare the radiation sensitivity and survivability of cells based on telomere length. They also monitored DNA repair responses in the cells by looking for specific biochemical signs that indicate whether the repair systems are working.

The tests involved normal human foreskin cells--called fibroblasts--and human cervical carcinoma cells. They exposed the cells to ionizing radiation and studied DNA repair responses as telomeres became increasingly shorter. In the cervical cancer cells, researchers blocked the telomerase enzyme before radiation treatment to induce progressively shorter telomeres.

Both late-stage noncancerous cells with shorter telomeres, and cancer cells with induced shorter telomeres, were more radiosensitive and died more rapidly, according to the study. Among cancer cells with preserved telomere length, close to 10% receiving the maximum dose of ionizing radiation used in the study (8 Gy) survived the treatment. None of the cancer cells with the shortest telomeres survived that exposure.

Researchers reported that the cancer cells became more radiosensitive because material inside the chromosomes--called chromatin--compacted as telomeres became shorter. Compacted chromatin then disrupted the biochemical signaling of a protein called ataxiatelangeietasia mutated (ATM).

ATM is a master regulator of DNA repair and cell division. It sends signals to activate other biochemical targets (H2AX, SMC1, NBS1 and p53) that help direct DNA repair and preserve genetic stability. In telomere-shortened cancer cells, the compacted chromatin inhibited ATM signaling to all of the chromatin-bound targets tested in the study. This disrupted DNA repair responses and increased radiation sensitivity.

The researchers are now assessing their findings in cells from hard-to-treat pediatric brain tumors. These tests begin as Dr. Drissi’s laboratory also leads correlative cancer biology studies of tumor samples from a current clinical trial. The trial is evaluating telomere shortening as a stand-alone therapy for pediatric cancer.

Managed through the US National Institutes of Health’s (Bethesda, MD, USA) Children’s Oncology Group (COG), the multi-institutional phase 1 trial is testing the safety and tumor response capabilities of the drug Imetelstat, which blocks telomerase in cancer cells. Dr. Drissi serves on the clinical trial committee along with Maryam Fouladi, MD, MSc, and medical director of neuro-oncology at Cincinnati Children’s. She leads the medical center's clinical participation in the trial.

Drs. Drissi and Fouladi are starting prep work to develop and seek approvals for a possible clinical trial to evaluate telomere shortening and radiation treatment as a safer, more effective treatment for pediatric brain tumors.

Related Links:

Cincinnati Children’s Hospital Medical Center


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Pipette
Accumax Smart Series
New
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Researchers identified SARS-CoV-2 protein fragments within extracellular vesicles in the blood of long COVID patients (Photo courtesy of Shutterstock)

Blood Biomarker Test Could Confirm Long COVID Diagnosis

Long COVID remains a diagnostic challenge, with clinicians currently relying on a collection of symptoms that appear 12 weeks or more after SARS-CoV-2 infection. No blood tests or biomarkers currently... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: Insights into sarcomatoid renal cell carcinoma point to broader use of common immunotherapies (Photo courtesy of Salgia NJ et al., Cancer Cell, 2025)

Novel Gene Signature Predicts Immunotherapy Response in Advanced Kidney Cancers

Sarcomatoid renal cell carcinoma (sRCC) is a rare, aggressive form of kidney cancer comprising about 5% of cases and is typically diagnosed at late stages. Resistant to most therapies, it has shown unusually... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.