We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Microchip Demonstrates Biomolecules’ Magnetic Attraction

By LabMedica International staff writers
Posted on 02 Nov 2011
Scientists have developed a low-power microchip that uses a combination of magnetic switches and microfluidics to trap and transport magnetic beads. More...
The innovative transport chip may have applications in biotechnology and medical diagnostics.

A major advance in the new chip is the use of magnetic switches similar to those in a computer random access memory. As described in an article published October 3, 2011, in the journal Applied Physics Letters, the investigators, from the US National Institute of Standards and Technology (NIST; Gaithersburg, MD, USA) and University of Colorado Boulder (CU; USA), used the chip to trap, release, and transport magnetic beads that potentially could be used as transport vehicles for biomolecules such as DNA.

Traditional microfluidics systems use pumps and valves to move particles and liquids through channels. Magnetic particle transport microchips provide a new application for microfluidics, but typically require continuous power, and in some instances, cooling to avoid sample damage from excessive heating. The technology eliminates these drawbacks while offering the possibility for random access two-dimensional control and a memory that lasts even with the power off.

The demo chip features two adjacent lines of 12 thin-film magnet switches called spin valves, usually used as magnetic sensors in read heads of high-density computer disk drives. In this case, however, the spin valves have been optimized for magnetic trapping. Pulses of electric current are used to switch individual spin valve magnets “on” to trap a bead, or “off” to release it, and thereby move the bead down a ladder formed by the two lines. The beads begin suspended in salt water above the valves before being trapped in the array.

“It’s a whole new way of thinking about microfluidics,” said NIST physicist Dr. John Moreland. “The cool thing is it’s a switchable permanent magnet--after it’s turned on it requires no power. You beat heat by switching things quickly, so you only need power for less than a microsecond.”

NIST researchers previously shown that spin valves could be used to trap and rotate particles and recently were awarded two patents related to the idea of a magnetic chip.

Magnetic tags are utilized in bioassays such as protein and DNA purification and cell breakdown and separation. The chip demonstration provides a conceptual foundation for a more complex magnetic random access memory (MRAM) for molecular and cellular manipulation. For example, programmable microfluidic MRAM chips might simultaneously regulate a large number of beads, and the attached molecules or cells, to assemble “smart” tags with specified characteristics, such as an affinity for a given protein at a specific position in the array.

NIST is also interested in developing cellular and molecular tags for magnetic resonance imaging (MRI) research in which individual cells, such as stem cells or cancer cells, would be tagged with a smart magnetic biomarker that can be monitored remotely in an MRI scanner, according to Dr. Moreland. Automated spin valve chips might also be used in portable instruments for rapid medical diagnosis or DNA sequencing.

Related Links:

The US National Institute of Standards and Technology
University of Colorado Boulder
Video NIST CU Magnetic Microfluidic Chip





Gold Member
Troponin T QC
Troponin T Quality Control
Serological Pipet Controller
PIPETBOY GENIUS
New
Integrated Biochemical & Immunological System
Biolumi CX8
New
Silver Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.