We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Protein Structure Revealed by Mass Spectrometry Technique

By LabMedica International staff writers
Posted on 31 May 2011
An advanced mass spectroscopy technique was used to detail the structure of a signaling protein critical to physiological processes involved in major diseases such as diabetes and cancer.

The protein, Epac2 (exchange protein directly activated by cAMP 2), is a guanine nucleotide exchange factor that regulates a wide variety of intracellular processes in response to second messenger cAMP (cyclic adenosine monophosphate).

A collaborative project was carried out by investigators at the University of Texas Medical Branch (Galveston, USA) and the University of California, San Diego (USA) to define the three-dimensional structure of Epac2 in the presence and absence of cAMP using an advanced mass spectroscopy technique known as hydrogen/deuterium exchange mass spectrometry (DXMS).

Results published in the May 20, 2011, issue of the Journal of Biological Chemistry revealed that that cAMP interacted with its two known binding sites on Epac2 in a sequential fashion and that binding of cAMP changed the shape of the protein in a very specific way. More...
This shape change was caused by a major hinge motion centered on the C- terminus of the second cAMP binding domain. This conformational change realigned the regulatory components of Epac2 away from the catalytic core, making the later available for effector binding.

"This study applied a powerful protein structural analysis approach to investigate how a chemical signal called cAMP turns on one of its protein switches, Epac2," said senior author Dr. Xiaodong Cheng, professor of pharmacology and toxicology at the University of Texas Medical Branch.

"DXMS analysis has proved to be an amazingly powerful approach, alone or in combination with other techniques, in figuring out how proteins work as molecular machines, changing their shapes – or morphing – in the normal course of their function," said contributing author Dr. Virgil Woods, professor of medicine at the University of California, San Diego. "This will be of great use in the identification and development of therapeutic drugs that target these protein motions."

Related Links:
University of Texas Medical Branch
University of California, San Diego




Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Urine Chemistry Control
Dropper Urine Chemistry Control
New
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: Prof. Nicholas Schwab has found a biomarker that can predict treatment outcome of glatirameracetate in MS patients (Photo courtesy of Uni MS - M. Ibrahim)

Simple Genetic Testing Could Predict Treatment Success in Multiple Sclerosis Patients

Multiple sclerosis (MS) patients starting therapy often face a choice between interferon beta and glatiramer acetate, two equally established and well-tolerated first-line treatments. Until now, the decision... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
Image: (A) Normal skin and (B) possible pathology in ALS skin (Photo courtesy of Biomolecules and Biomedicine (2025) DOI: 10.17305/bb.2025.12100)

Skin-Based Biomarkers to Enable Early Diagnosis of Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that damages motor neurons in the brain and spinal cord, causing muscle weakness, paralysis, and death within three to five... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.