We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Electrical Impedance Measures Physiological Changes in Skeletal Muscle Thickness

By LabMedica International staff writers
Posted on 19 May 2011
Changes in myotube thickness were measured by measuring cellular electrical impedance.

Tracking physiological changes in skeletal muscle thickness is a direct and unbiased approach in screening therapeutic compounds that prevent skeletal muscle atrophy or induce hypertrophy. More...
In drug screening, it would be beneficial to find novel treatments that prevent muscle atrophy and other diseases associated with any morphologic change in cell shape.

Both qualitative and quantitative changes in electrical impedance as a function of cellular adhesion in real time correlated well with variation in myotube thickness caused by atrophy or hypertrophy agents. Conversely, pharmacologic blocking myotube hypertrophy prevented changes in electrical impedance.

Sergey Rakhilin PhD of Novartis (Basel, Switzerland) and colleagues used the xCELLigence system from Roche (Penzberg, Germany) to show that both qualitative and quantitative changes in electrical impedance as a function of cellular adhesion in real time correlate well with variation in myotube thickness caused by atrophy or hypertrophy agents. Conversely, pharmacologic blocking myotube hypertrophy prevented changes in electrical impedance. According to the study, impedance can be used as a reliable and sensitive biomarker for myotube atrophy or hypertrophy.

The study appeared online on April 14, 2011 in the Journal of Biomolecular Screening.

In the past, it was difficult to estimate accurate cell thickness for a couple of reasons. One is the extreme heterogeneity of the myotube cellular population and therefore the lack of a regular distribution of perturbed myotubes. Another reason is the fact that differentiated myotubes form a confluent layer, which makes it difficult to estimate parameters of individual cells. In addition, most of the atrophy or hypertrophy-induced changes in cell thickness are relatively small (less than twofold) and therefore hard to detect with low statistical error. Electrical impedance measurement overcomes these hurdles and offers a reliable method to determine cell thickness.

Related Links:
Novartis
Roche



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Portable Electronic Pipette
Mini 96
New
8-Channel Pipette
SAPPHIRE 20–300 µL
New
Silver Member
PCR Plates
Diamond Shell PCR Plates
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Left is the original cell image and right is same cell image zoomed in and rendered in the special imaging software (Photo courtesy of FIU)

Brain Inflammation Biomarker Detects Alzheimer’s Years Before Symptoms Appear

Alzheimer’s disease affects millions globally, but patients are often diagnosed only after memory loss and other symptoms appear, when brain damage is already extensive. Detecting the disease much earlier... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.