We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Biodegradable Nanoparticles Kill Drug Resistant Gram-Positive Bacteria

By LabMedica International staff writers
Posted on 20 Apr 2011
A recent paper described the development of biodegradable nanoparticles capable of killing Gram-positive bacteria including MRSA (Methicillin-resistant Staphylococcus aureus).

Investigators at the IBM Almaden Research Laboratory (San Jose, CA, USA) focused on types of nanoparticles that would be able to disrupt bacterial cell membranes. More...
They reasoned that while it only requires one to two decades for microbes to develop resistance to traditional antibiotics that target a particular metabolic pathway inside the cell, drugs that compromise microbes' cell membranes are probably less likely to evoke resistance.

In the current study, they prepared polymer nanoparticles synthesized by metal-free organocatalytic ring-opening polymerization of functional cyclic carbonate. These nanoparticles were biodegradable and possessed a secondary structure that could insert into and disintegrate bacterial and fungal cell membranes.

Data obtained in collaboration with researchers at the Singapore Institute of Bioengineering and Nanotechnology (Singapore) was published in the April 3, 2011, online edition of the journal Nature Chemistry. Results showed that the nanoparticles disrupted microbial walls and membranes selectively and efficiently, thus inhibiting the growth of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), and fungi, without inducing significant hemolysis over a wide range of concentrations.

The biodegradable nanoparticles, which can be synthesized in large quantities and at low cost, represent a promising new class of antimicrobial drugs.

"We are trying to generate polymers that interact with microbes in a very different way than traditional antibiotics,” said contributing author Dr. James Hedrick, a materials scientist at the IBM Almaden Research Laboratory.

Related Links:
IBM Almaden Research Laboratory
Singapore Institute of Bioengineering and Nanotechnology


Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Hemodynamic System Monitor
OptoMonitor
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Neuron-derived extracellular vesicles carry many biomarker candidates for Alzheimer’s (S Chinnathambi et al., Brain Network Disorders (2025). doi.org/10.1016/j.bnd.2024.12.006)

Neuron-Derived Extracellular Vesicles Could Improve Alzheimer’s Diagnosis

Alzheimer’s disease is becoming increasingly common as global populations age, yet effective treatments for advanced stages remain limited. Early detection is therefore critical, but current diagnostic... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.