We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Biodegradable Nanoparticles Kill Drug Resistant Gram-Positive Bacteria

By LabMedica International staff writers
Posted on 20 Apr 2011
A recent paper described the development of biodegradable nanoparticles capable of killing Gram-positive bacteria including MRSA (Methicillin-resistant Staphylococcus aureus).

Investigators at the IBM Almaden Research Laboratory (San Jose, CA, USA) focused on types of nanoparticles that would be able to disrupt bacterial cell membranes. More...
They reasoned that while it only requires one to two decades for microbes to develop resistance to traditional antibiotics that target a particular metabolic pathway inside the cell, drugs that compromise microbes' cell membranes are probably less likely to evoke resistance.

In the current study, they prepared polymer nanoparticles synthesized by metal-free organocatalytic ring-opening polymerization of functional cyclic carbonate. These nanoparticles were biodegradable and possessed a secondary structure that could insert into and disintegrate bacterial and fungal cell membranes.

Data obtained in collaboration with researchers at the Singapore Institute of Bioengineering and Nanotechnology (Singapore) was published in the April 3, 2011, online edition of the journal Nature Chemistry. Results showed that the nanoparticles disrupted microbial walls and membranes selectively and efficiently, thus inhibiting the growth of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), and fungi, without inducing significant hemolysis over a wide range of concentrations.

The biodegradable nanoparticles, which can be synthesized in large quantities and at low cost, represent a promising new class of antimicrobial drugs.

"We are trying to generate polymers that interact with microbes in a very different way than traditional antibiotics,” said contributing author Dr. James Hedrick, a materials scientist at the IBM Almaden Research Laboratory.

Related Links:
IBM Almaden Research Laboratory
Singapore Institute of Bioengineering and Nanotechnology


New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Silver Member
Autoimmune Hepatitis Test
LKM-1-Ab ELISA
New
Silver Member
Quality Control Material
Multichem ID-B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.