We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Scientists Create Engineered Organ Model for Breast Cancer Research

By LabMedica International staff writers
Posted on 10 Feb 2011
Researchers have replicated portions of the female breast in a tiny slide-sized model called "breast on-a-chip” that will be used to evaluate nanomedical applications for the detection and treatment of breast cancer. More...
The model mimics the branching mammary duct system, where most breast cancers begin, and will serve as an "engineered organ” to study the use of nanoparticles to detect and target tumor cells within the ducts.

Dr. Sophie Lelièvre, associate professor of basic medical sciences in the School of Veterinary Medicine (SVM), and Dr. James Leary, professor of nanomedicine and professor of basic medical sciences in the School of Veterinary Medicine and professor of biomedical engineering in the Weldon School of Biomedical Engineering at Purdue University (West Lafayette, IN, USA), led the team.

"Breast cancer is the most common cancer in women in most countries, and in the US alone nearly 40,000 women lost their lives to it this past year,” said Dr. Lelièvre, who is associate director of discovery groups in the Purdue Center for Cancer Research and a leader of the international breast cancer and nutrition project in the Oncological Sciences Center. "We've known that the best way to detect this cancer early and treat it effectively would be to get inside the mammary ducts to evaluate and treat the cells directly, and this is the first step in that direction.”

Dr. Lelièvre and Dr. Leary plan ultimately to be able to introduce magnetic nanoparticles through openings in the nipple, employ a magnetic field to guide them through the ducts where they would attach to cancer cells and then reverse the magnetic field to retract any excess nanoparticles.

The nanoparticles could carry contrast agents to improve mammography, fluorescent markers to guide surgeons or anticancer agents to treat the cancer, according to Dr. Leary. "Nanoparticles can be designed to latch on to cancer cells and illuminate them, decreasing the size of a tumor that can be detected through mammography from 5 mm to 2 mm, which translates into finding the cancer 10 times earlier in its evolution,” Dr. Leary said. "There also is great potential for nanoparticles to deliver anticancer agents directly to the cancer cells, eliminating the need for standard chemotherapy that circulates through the entire body causing harmful side effects."

Physicians have tried to access the mammary ducts through the nipple in the past, injecting fluid solutions to try to wash out cells that could be studied and used for a diagnosis of cancer. However, this approach could only reach the first third of the breast due to fluid pressure from the ducts, which branch and become smaller and smaller as they near the glands that produce milk, according to Dr. Leary. "The idea is that nanoparticles with a magnetic core can float through the naturally occurring fluid in the ducts and be pulled by a magnet as opposed to being pushed with pressure. We think they could reach all the way to the back of the ducts, where it is believed most breast cancers originate. Of course, we are only at the earliest stages and many tests need to be done.”

This sort of research could not be conducted using conventional models that grow cells across a flat surface in a plastic dish, so the investigators created the artificial organ-like model in which living cells line a three-dimensional model of the smallest portions of the mammary ducts.

Dr. Lelièvre, whose group is one of the few in the world able to grow the complicated cells that line the mammary ducts effectively, coaxed the cells to grow within the mold and behave as they would within a real human breast. "The cells within the breast ductal system have a very specific organization that has proven difficult to obtain in a laboratory,” Dr. Lelièvre said. "The cells have different sides, and one side must face the wall of the duct and the other must face the inner channel. Reproducing this behavior is very challenging, and it had never been achieved on an artificial structure before.”

The scientists coated the mold in a protein-based compound called laminin 111 as a foundation for the cells that allows them to attach to the mold and behave as they would inside the body, Dr. Lelièvre reported.

Because injecting the delicate cells into the finished channels of the mold caused too much damage, the researchers devised a removable top for the channels. "The design of the U-shaped channels and top was necessary for us to be able to successfully apply the cells, but it also allows us to make changes quickly and easily for different tests,” Dr. Lelièvre stated. "We can easily introduce changes among the cells or insert a few tumor cells to test the abilities of the nanoparticles to recognize them. The design also makes it very easy to evaluate the results as the entire model fits under a microscope.”

An article detailing the team's research was published January 2011 in the journal Integrative Biology. The team has demonstrated that nanoparticles can be moved within the bare channels of the mold filled with fluid, but has not yet moved nanoparticles through the finished model lined with living cells, Dr. Lelièvre reported. The investigators next plan to create and evaluated nanoparticles with a slippery surface that will prevent them from adhering to the cells as they move through the channels and coatings that contain antibodies to target and attach to specific types of cancerous and precancerous cells, she stated.

"Although we are at the very beginning stages of this work, we are hopeful that this nanomedical approach will one day save lives and provide patients with an easier road to recovery,” Dr. Lelièvre concluded. "The successful creation of this model is an important milestone in this work and it is a testament to what can be accomplished through multidisciplinary research.”

Related Links:
Purdue University


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Portable Electronic Pipette
Mini 96
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
New
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Left is the original cell image and right is same cell image zoomed in and rendered in the special imaging software (Photo courtesy of FIU)

Brain Inflammation Biomarker Detects Alzheimer’s Years Before Symptoms Appear

Alzheimer’s disease affects millions globally, but patients are often diagnosed only after memory loss and other symptoms appear, when brain damage is already extensive. Detecting the disease much earlier... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.