We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




MicroRNA Blocks Proapoptotic Genes in Mature Nerve Cells

By LabMedica International staff writers
Posted on 08 Feb 2011
A microRNA (miRNA) has been identified that blocks the activity of proapoptotic proteins in mature nerve cells and may be a potential drug for the treatment of neurodegenerative disorders.

During development, nerve cells that fail to connect to target tissues self-destruct. More...
Yet, once such connections are made, surviving neurons become resistant to apoptosis for the life span of the organism.

Investigators at the University of North Carolina (Chapel Hill, USA) studied the mechanism underlying this radical change in behavior. They considered the class of gene-regulating molecules known as microRNAs to be a particularly promising target. To this end, they screened all known miRNAs to identify differences between immature and mature neurons.

Results published in the January 15, 2011, online edition of the journal Genes & Development revealed that the microRNA miR-29 was markedly induced with neuronal maturation. Immature neurons that would normally die became resistant to apoptosis following exposure to miR-29. Furthermore, analysis of brain tissues from patients with Alzheimer's disease or Huntington's disease showed reduced levels of miR-29.

The investigators reported that at the molecular level miR-29 blocked the activity of the genes that encode the BH3-only proapoptotic protein family. MiR-29 was able to inhibit several of these genes, circumventing a redundancy that allowed apoptosis to continue even if one of them had been blocked.

"There is the real possibility that this molecule could be used to block the cascade of events known as apoptosis that eventually causes brain cells to break down and die,” said senior author Dr. Mohanish Deshmukh, associate professor of cell and developmental biology at the University of North Carolina.

"People in the field have been perplexed that when they have knocked-out any one of these members it has not had a remarkable effect on apoptosis because there are others that can step in and do the job,” said Dr. Deshmukh. "The fact that this microRNA can target multiple members of this family is very interesting because it shows how a single molecule can basically in one stroke keep apoptosis from happening. Interestingly, it only targets the members that are important for neuronal apoptosis, so it may be a way of specifically preserving cells in the brain without allowing them to grow out of control (and cause cancer) elsewhere in the body.”

Related Links:
University of North Carolina


New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Pan-Cancer Panel
TruSight Oncology 500
New
Silver Member
Autoimmune Hepatitis Test
LKM-1-Ab ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: Brain biomarkers of Alzheimer\'s disease can be detected as early as middle age (Photo courtesy of University of Shutterstock)

Blood-Based Biomarkers Could Detect Alzheimer's as Early as Middle Age

As the global population ages, Alzheimer's disease and other dementing diseases are becoming more prevalent. The disease processes leading to Alzheimer's symptoms can begin years or even decades before... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: Micrograph showing the distribution of misfolded proteins in myeloma cells (Photo courtesy of Helmholtz Munich)

Novel Method Tracks Cancer Treatment in Cells Without Dyes or Labels

Multiple myeloma is a blood cancer that affects plasma cells in the bone marrow, leading to abnormal protein production, weakened immunity, and organ damage. Traditional methods for evaluating myeloma... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.