We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Scientists Create Blood Vessels, Capillaries for Lab-Grown Tissues

By LabMedica International staff writers
Posted on 07 Feb 2011
Researchers have overcome one of the major hurdles on the path to growing transplantable tissue in the lab: they have found a way to grow the blood vessels and capillaries needed to keep tissues alive. More...


The new research, conducted by investigators from Rice University (Houston, TX, USA) and Baylor College of Medicine (BCM; Houston, TX, USA), is available online, and it was published in the January 2011 issue of the journal Acta Biomaterialia. "The inability to grow blood-vessel network --or vasculature--in lab-grown tissues is the leading problem in regenerative medicine today,” said lead coauthor Dr. Jennifer West, department chair, and professor of bioengineering at Rice. "If you don't have blood supply, you cannot make a tissue structure that is thicker than a couple hundred microns.”

As its base material, a team of researchers led by Dr. West and BCM molecular physiologist Dr. Mary Dickinson chose polyethylene glycol (PEG), a nontoxic plastic that is widely used in medical devices and food. Building on 10 years of research in Dr. West's lab, the scientists modified the PEG to mimic the body's extracellular matrix--the network of proteins and polysaccharides that comprise a considerable portion of most tissues.

Drs. West, Dickinson, Rice graduate student Jennifer Saik, Rice, undergraduate Emily Watkins, and Rice-BCM graduate student Daniel Gould combined the modified PEG with two kinds of cells--both of which are needed for blood-vessel formation. Using light that locks the PEG polymer strands into a solid gel, they created soft hydrogels that contained living cells and growth factors. After that, they filmed the hydrogels for 72 hours. By tagging each type of cell with a different colored fluorescent marker, the scientists were able to see as the cells gradually formed capillaries throughout the soft, plastic gel.

To assess these new vascular networks, the researchers implanted the hydrogels into the corneas of mice, where no natural vasculature exists. After injecting a dye into the mice's bloodstream, the researchers confirmed normal blood flow in the newly grown capillaries.

Another major development, conducted by Dr. West and graduate student Joseph Hoffmann, in November 2010, involved the generation of a new technique called two-photon lithography, an ultrasensitive method of using light to create intricate three-dimensional (3D) patterns within the soft PEG hydrogels. West said the patterning technique allows the engineers to exert a fine level of control over where cells move and grow. In follow-up research, also in collaboration with the Dickinson lab at BCM, Dr. West and her colleagues plan to use the technique to grow blood vessels in predetermined patterns.

Related Links:
Rice University
Baylor College of Medicine


Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
Gold Member
Hematology Analyzer
Medonic M32B
New
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: Development of targeted therapeutics and diagnostics for extrapulmonary tuberculosis at University Hospital Cologne (Photo courtesy of Michael Wodak/Uniklinik Köln)

Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis

Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.