We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Breast Inflammation Shown to Be Key to Cancer Growth

By LabMedica International staff writers
Posted on 10 Jan 2011
It took 12 years and a creation of a highly sophisticated transgenic mouse, but researchers have finally confirmed a long believed hypothesis that inflammation in the breast is key to the development and progression of breast cancer. More...


In the December 15, 2010, issue of the journal Cancer Research, the scientists, from at Kimmel Cancer Center at Jefferson University (Philadelphia, PA, USA), reported they can now conclusively demonstrate that an inflammatory process within the breast itself promotes growth of breast cancer stem cells responsible for tumor development. They also show that inactivating this inflammation selectively within the breast reduced activity of these stem cells, and blocked breast cancer from forming.

"These studies show for the first time that inactivating the NFKB inflammatory pathway in the breast epithelium blocks the onset and progression of breast cancer in living animals," said Richard G. Pestell, MD, PhD, director, Kimmel Cancer Center, and chairman of cancer biology.

"This finding has clinical implications," remarked coauthor Michael Lisanti, leader of the Program in Molecular Biology and Genetics of Cancer at Jefferson. "Suppressing the whole body's inflammatory process has side effects. These studies provide the rationale for more selective anti-inflammatory therapy directed just to the breast."

Dr. Pestell and his colleagues showed the "canonical" NFKB pathway promotes breast cancer development: the first "insult" is provided by the HER2 oncogene, which then activates NFKB (nuclear factor kappa-light-chain-enhancer of activated B cells). NFKB triggers inflammation via tumor-associated macrophages (TAM), which produce tumor growth-promoting factors.

Although inflammation, mediated by NFKB, has long been thought to be important in breast cancer development, the hypothesis had been untestable because NF-κB is vital to embryonic development, according to Dr. Pestell. "When you try to knock out NFKB genes in mice, they die." He addressed this problem by creating a mouse in which the inflammatory system within the adult animal's normal breast could be regulated. This allows selective inactivation of NFKB in different cell types, and took 12 years to accomplish, Dr. Pestell reported. "These mice have five cointegrated transgenes."

The mice are programmed to develop breast cancer; however, the researchers discovered that if they selectively blocked inflammation just in the breast, tumors would not develop. "This is a very novel finding," Dr. Pestell stated.

The investigators then demonstrated that this inactivation also reduced the number of cancer stem cells in the breast. "That told us that inflammation, through the action of NF-κB, is important to the growth and activity of cancer stem cells," Dr. Pestell said. "The transgenic mice are a new technology that can be used by the scientists and the pharmaceutical industry to understand the role of NFKB in different diseases including heart disease, neurodegeneration, and other cancers."

Related Links:
Kimmel Cancer Center at Jefferson University




Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Hemodynamic System Monitor
OptoMonitor
New
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Platelets sequester cfDNA during circulation (Murphy L. et al., Science, 2025; DOI: 10.1126/science.adp3971)

Platelets Could Improve Early and Minimally Invasive Detection of Cancer

Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.