We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




X-Rays Provide Detailed View of Hotspots for Calcium-Related Disease

By LabMedica International staff writers
Posted on 02 Dec 2010
Using intense X-rays, researchers have determined the detailed structure of a critical part of the ryanodine receptor, a protein associated with calcium-related disease. More...


The study‘s findings, which combine data from Stanford Synchrotron Radiation Lightsource (SSRL; Menlo Park, CA, USA) at the US Department of Energy's SLAC National Accelerator Laboratory and the Canadian Light Source (Saskatoon, Saskatchewan, Canada), pinpoint the locations of more than 50 mutations that cluster in disease "hotspots” along the receptor. "Until now, no one could tell where these disease mutations were located or what they were doing,” said lead investigator Dr. Filip Van Petegem of the University of British Columbia (Vancouver, Canada).

The ryanodine receptor controls the release of calcium ions from a stockroom within skeletal-muscle and heart-muscle cells as needed to perform vital functions. Earlier research at lower resolution indicated that mutations cluster in three regions along the receptor, but without more detailed information it remained unclear precisely how they contributed to disease.

In a study published November 3, 2010, in the journal Nature, Dr. Van Petegem and his group describe the structure of one of these hotspots in extremely fine detail and predict how the mutations might cause the receptor to malfunction and release calcium too soon. The receptor is comprised of more than 20,000 amino acids. Dr. Van Petegem's group studied a string of about 560 amino acids, where they found 57 mutations. In 56 cases, the mutations involved a change in a single amino acid, while the last one involved a deletion of 35 amino acids from the string. "These mutations most likely cause the same disease effects, but a severe mutation leads to stronger symptoms, and doesn't require as big of a stimulus to induce disease,” Dr. Van Petegem said.

In the heart, the receptor is stimulated to open approximately once a second when the body is at rest, transmitting regular pulses of calcium into the rest of the cell. In skeletal muscles, the timing of the pulses is determined by how often the muscles contract. Each time the receptor opens, specific amino acids rearrange themselves to facilitate the calcium release. Mutations can disrupt this process by causing the receptor to open either earlier or more easily than it should.

This premature release of calcium generates extra electrical signals within the cells. In skeletal muscle, this can lead to fatal rises in body temperature under certain anesthetics, or the failure of major muscles. In cardiac muscle, it can trigger an arrhythmia, resulting in sudden cardiac death. While it is difficult to determine the precise number of people with these mutations, it is estimated that as many as one in 10,000 may be at risk for disease.

Future studies at SSRL and other synchrotron facilities will map out other receptor hotspots where these disease mutations cluster and use the detailed information to understand the complex functions of the protein better. "It is very exciting to see the significant impact of our advanced structural biology technologies in helping users address difficult projects,” said SSRL staff scientist Michael Soltis.

Related Links:
Stanford Synchrotron Radiation Light source
Canadian Light Source
University of British Columbia


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Scout\'s patented molecular technology delivers results matching high-complexity PCR 99% of the time (Photo courtesy of Scout Health)

STI Molecular Test Delivers Rapid POC Results for Treatment Guidance

An affordable, rapid molecular diagnostic for sexually transmitted infections (STIs) has the potential to be globally relevant, particularly in resource-limited settings where rapid, point-of-care results... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.