Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




DNA Chip Technology Identifies Contributors to an Individual's Uniqueness

By LabMedica International staff writers
Posted on 16 Sep 2010
Building on an application that was developed in yeast four years ago, researchers scanned the human genome and identified what they believe is the basis for people to have such a wide diversity of physical traits and disease risks. More...


In a report published online August 2010 of the journal Cell, the scientists, from the Johns Hopkins University School of Medicine (Baltimore, MD, USA), identified a near complete catalog of the DNA segments that copy themselves, move around in, and insert themselves here and there in the genome. The insertion locations of these moveable segments-- transposons--in each individual's genome helps determine why some are tall or short, blond, or brunette, and more likely or less likely to have cancer or heart disease. The Johns Hopkins researchers reported that tracking the locations of transposons in individuals with specific diseases might lead to the finding of new disease genes or mutations.

Using their specialized "chip” with DNA spots that contain all of the DNA sequences that appear in the genome, researchers applied human DNA from 15 unrelated people. The research team compared transposon sites first identified in the original published human "index” genome and found approximately 100 new transposon sites in each person screened. "We were surprised by how many novel insertions we were able to find,” stated Jef Boeke, Ph.D., Sc.D., an author on the article, a professor of molecular biology and genetics, and codirector of the High Throughput Biology Center of the Institute for Basic Biomedical Sciences at Johns Hopkins. "A single microarray experiment was able to reveal such a large number of new insertions that no one had ever reported before. The discovery taught us that these transposons are much more active than we had guessed.”

Each of the 15 different DNA samples used in the research was purified from blood cells before it was applied to a DNA chip. Transposons adhere to areas on the DNA chip corresponding to where they are normally found in the genome, allowing the researchers locate new ones.

Dr. Boeke's group first invented the transposon chip in 2006 for use in yeast. However, it was Kathleen Burns, M.D., Ph.D., now an assistant professor of pathology at Johns Hopkins, who first got the chip to work with human DNA. "The human genome is much larger and more complex, and there are lots of look-a-like DNAs that are not actively moving but are similar to the transposons that we were interested in,” said Dr. Burns.

The hard part was to modify how they copied the DNA before it was applied over the chip. The researchers were able to copy DNA from the transposons of interest, which have just three different genetic code letters than other similar DNA segments.

"We've known that genomes aren't static places, but we didn't know how many transposons there are in each one of us; we didn't know how often a child is born with a new one that isn't found in either parent and we didn't know if these DNAs were moving around in diseases like cancer,” concluded Dr. Burns. "Now we have a tool for answering these questions. This adds a whole dimension to how we look at our DNA.”

Related Links:

Johns Hopkins University School of Medicine




Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.