We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Gene Manipulations Enable Regeneration of Injured Spinal Tissue

By LabMedica International staff writers
Posted on 26 Aug 2010
Inactivation of the PTEN gene in corticospinal tract (CST) axons enabled these cells to regenerate and reestablish functional nerve connections in a rodent spinal injury model.

PTEN (phosphatase and tensin homologue) acts as a tumor suppressor gene through the action of its phosphatase protein product. More...
This phosphatase is involved in the regulation of the cell cycle, preventing cells from growing and dividing too rapidly. Mutations of this gene contribute to the development of certain cancers. When the PTEN enzyme is functioning properly, it acts as part of a chemical pathway that signals cells to stop dividing and causes cells to undergo programmed cell death (apoptosis) when necessary. These functions prevent uncontrolled cell growth that can lead to the formation of tumors. There is also evidence that the protein made by the PTEN gene may play a role in both cell movement and adhesion of cells to surrounding tissues. One of the pathways under direct PTEN control is called mTOR, which is a key regulator of cell growth and is dysregulated in many human diseases, especially certain cancers.

A team of collaborators from the University of California, Irvine (USA), the University of California, San Diego, and Harvard University (Cambridge, MA, USA) developed a method for increasing mTOR activity in axons through the conditional deletion of PTEN. They reported in the August 8, 2010, online edition of the journal Nature Neuroscience that increased mTOR activity in damaged nerve tissue enhanced compensatory sprouting of uninjured CST axons and enabled successful regeneration of a cohort of injured CST axons past a spinal cord lesion. These regenerating CST axons possessed the ability to reform synapses in spinal segments distal to the injury.

"Until now, such robust nerve regeneration has been impossible in the spinal cord,” said contributing author Dr. Oswald Steward, professor of anatomy and neurobiology at the University of California, Irvine. "Paralysis and loss of function from spinal cord injury has been considered untreatable, but our discovery points the way toward a potential therapy to induce regeneration of nerve connections following spinal cord injury in people. The devastating consequences of spinal cord injury occur even though the spinal cord below the level of injury is intact. All these lost functions could be restored if we could find a way to regenerate the connections that were damaged.”

Based on these findings, the investigators believe that modulating neuronal intrinsic PTEN/mTOR activity represents a potential therapeutic strategy for promoting axon regeneration and functional repair after adult spinal cord injury. To this end, they are now studying whether the PTEN-deletion treatment leads to actual restoration of motor function in mice with spinal cord injury.

Related Links:

University of California, Irvine
University of California, San Diego
Harvard University




New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Human Estradiol Assay
Human Estradiol CLIA Kit
New
Silver Member
Quality Control Material
NATtrol Chlamydia trachomatis Positive Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Platelets sequester cfDNA during circulation (Murphy L. et al., Science, 2025; DOI: 10.1126/science.adp3971)

Platelets Could Improve Early and Minimally Invasive Detection of Cancer

Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.