We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Retrieval Technique Simplifies Cancer Protein Research

By LabMedica International staff writers
Posted on 05 Aug 2010
New technology has been devised to retrieve better specific proteins needed to examine how cancer cells form by using a newly developed technique and synthetic nanopolymer. More...


Dr. W. Andy Tao, an assistant professor of biochemistry at Purdue University (West Lafayette, IN, USA), reported that these specific proteins, called phosphoproteins, can be mapped and examined so that investigators can find ways to suppress the processes that lead to cancer. But first, those few proteins must be picked out of a sea of thousands of others.

Dr. Tao developed and patented the polymer-based metal-ion affinity capture (PolyMAC) method. The synthetic nanopolymer isolates proteins and peptides that have undergone a process called phosphorylation that is highly associated with cancer, and a patented technique allows the retrieval of those proteins. Obtaining the information on these proteins is important for studying how to inhibit the processes that lead to cancer.

"You really want to capture these particular proteins, but there are so many different types of proteins around them,” said Dr. Tao, whose findings were published in July 2010 the early online version of the journal Molecular & Cellular Proteomics. "The target proteins are a thousand times lower in amount than other proteins. They are difficult to study without the capturing step.”

Normal cells grow, divide, and ultimately die. However, cancer cells continue to grow and do not die. Dr. Tao noted that phosphorylation--in which a type of enzyme called a kinase attaches to and catalyzes a protein on a cell--is believed in many cases to be responsible for creating cancer cells. Dr. Tao's nanopolymer is water-soluble and has titanium ions on its surface, which bind with phosphorylated proteins and peptides contained in a solution. The polymer also has a chemical group attached that is reactive and attached to small beads, which allow researchers to retrieve the polymers. "Once you put the nanopolymer in the solution, you have to retrieve them, so we put a handle on the polymer so we can grab on to it and fish it out of the solution,” Dr. Tao stated.

In laboratory tests, the nanopolymer and retrieval technique isolated approximately twice as many proteins that had been phosphorylated by an enzyme highly expressed in certain leukemia cells but absent in metastatic breast cancer cells.

Dr. Tao is now looking for ways to get the polymer and technique into wider use to aid in the development of new cancer drugs. "This technique is very useful and can be used widely in research for cancer as well as infectious diseases,” Dr. Tao concluded.

A US$1 million U.S. National Institutes of Health (Bethesda, MD, USA) grant under the American Reinvestment and Recovery Act paid for a mass spectrometer Dr. Tao utilizes to analyze and map the proteins he recovers using his nanopolymer and retrieval technique.

Related Links:

Purdue University



Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Immunology

view channel
Image: The simple blood marker can predict which lymphoma patients will benefit most from CAR T-cell therapy (Photo courtesy of Shutterstock)

Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy

CAR T-cell therapy has transformed treatment for patients with relapsed or treatment-resistant non-Hodgkin lymphoma, but many patients eventually relapse despite an initial response. Clinicians currently... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.