Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Inhibition of Nitric Oxide Production Raises Blood Pressure

By LabMedica International staff writers
Posted on 19 Jul 2010
Nitric oxide is a regulator of blood pressure, but the action of the protein thrombospondin-1 (TSP1) via its necessary receptor CD47, inhibits nitric oxide production and causes blood pressure to increase.

The interaction of nitric oxide with heme proteins causes a cascade of intracellular events that leads to specific physiological changes within cells. More...
For example, nitric oxide causes the smooth muscle cells surrounding blood vessels to relax, decreasing blood pressure. Nitric oxide plays an important role in the central and peripheral nervous systems; the overproduction of nitric oxide in brain tissues has been implicated in stroke and other neurological problems.

In the current study, investigators at the University of Pittsburgh School of Medicine (PA, USA; www.pitt.edu) tested the hypothesis that TSP1 inhibited NO formation by acting on the enzyme endothelial nitric oxide synthase (eNOS), which catalyzes the production of NO in the cells that line blood vessels.

They reported in the July 7, 2010, online edition of the journal Cardiovascular Research that TSP1, working through its receptor CD47, inhibited activation of eNOS, which in turn limited the production of NO, thus preventing blood vessels from relaxing and blood pressure from dropping. TSP1 was found to circulate in the blood stream at levels capable of inhibiting activation of eNOS and thus blocking NO production.

"For some time now, it has not been clear what role TSP1 served in the blood. Experiments in cells told us TSP1 could alter NO signaling. But TSP1 is a protein too large to cross through the endothelial layer and into the blood vessel wall, so it was not obvious how it could alter the muscle tone of the arteries,” said senior author Dr. Jeffrey S. Isenberg, professor of medicine at the University of Pittsburgh School of Medicine. "We also knew that mice genetically engineered to not produce TSP1 or CD47 showed more NO-based blood flow and blood vessel dilation. This suggested to us that perhaps circulating TSP1 was altering the ability of the endothelium to make NO by acting on eNOS.”

"Identifying and unraveling this important pathway for blood pressure regulation could lead to a better understanding of who will get high blood pressure and why, as well as allow us to develop better drugs to treat these patients,” said Dr. Isenberg. "Poorly controlled hypertension is a major risk factor for heart attacks and heart failure, stroke and kidney failure.”

The investigators are examining the possibility of developing a novel line of blood pressure-regulating drugs that would preserve eNOS activity by blocking the inhibitory action of TSP1 and CD47.

Related Links:

University of Pittsburgh School of Medicine




New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Hemodynamic System Monitor
OptoMonitor
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.