We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




DNA Could Become Foundation of Next-Generation Logic Chips

By LabMedica International staff writers
Posted on 10 Jun 2010
In a single day, a solitary graduate student at a lab bench has shown he can generate more simple logic circuits than the world's entire output of silicon chips in one month. More...


A Duke University (Durham, NC, USA) engineer believes that the next generation of these logic circuits at the basis of computers will be produced inexpensively in nearly limitless quantities. The secret is that instead of silicon chips serving as the platform for electric circuits, computer engineers will take advantage of the unique properties of DNA, that double-helix carrier of all life's information.

In his latest set of experiments, Dr. Chris Dwyer, assistant professor of electrical and computer engineering at Duke's Pratt School of Engineering, demonstrated that by simply mixing modified bits of DNA and other molecules, he could create literally billions of identical, tiny, waffle-looking structures. Dr. Dwyer has demonstrated that these nanostructures will efficiently self-assemble, and when different light-sensitive molecules are added to the mixture, the waffles exhibit unique and "programmable” characteristics that can be readily utilized. Using light to excite these molecules, known as chromophores, he can create simple logic gates, or switches.

These nanostructures can then be used as the building blocks for a host of applications, ranging from the biomedical to the computational. "When light is shined on the chromophores, they absorb it, exciting the electrons,” Dr. Dwyer stated. "The energy released passes to a different type of chromophore nearby that absorbs the energy and then emits light of a different wavelength. That difference means this output light can be easily differentiated from the input light, using a detector.”

Instead of conventional circuits using electrical current to rapidly switch between zeros or ones, or to yes and no, light can be used to stimulate similar responses from the DNA-based switches--and much faster.

"This is the first demonstration of such an active and rapid processing and sensing capacity at the molecular level,” Dr. Dwyer said. The findings of his experiments were published online in May 2010 in the journal Small. "Conventional technology has reached its physical limits. The ability to cheaply produce virtually unlimited supplies of these tiny circuits seems to me to be the next logical step.”

DNA is a well-understood molecule comprised of pairs of complimentary nucleotide bases that have an affinity for each other. Customized snippets of DNA can inexpensively be synthesized by positioning the pairs in any order. In their experiments, the researchers took advantage of DNA's natural ability to fasten onto corresponding and specific areas of other DNA snippets.

Dr. Dwyer used a jigsaw puzzle analogy to describe the process of what occurs when all the waffle ingredients are mixed together in a container. "It's like taking pieces of a puzzle, throwing them in a box and as you shake the box, the pieces gradually find their neighbors to form the puzzle,” he said. "What we did was to take billions of these puzzle pieces, throwing them together, to form billions of copies of the same puzzle.”

In the current experiments, the waffle puzzle had 16 pieces, with the chromophores located atop the waffle's ridges. More complicated circuits can be created by building structures composed of many of these small components, or by building larger waffles. The possibilities are limitless, according to Dr. Dwyer.

In addition to their use in computing, Dr. Dwyer noted that since these nanostructures are basically sensors, many biomedical applications are possible. Tiny nanostructures could be constructed that could respond to different proteins that are markers for disease in a single drop of blood.

Related Links:
Duke University




New
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Portable Electronic Pipette
Mini 96
Clinical Chemistry System
P780
Pipette
Accumax Smart Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: When assessing the same lung biopsy sample, research shows that only 18% of pathologists will agree on a TCMR diagnosis (Photo courtesy of Thermo Fisher)

Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection

Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.