We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Genetically Engineered Plants Produce Potent Antimalaria and Anticholera Vaccine

By LabMedica International staff writers
Posted on 09 Feb 2010
Transgenic plants constitute a novel basis for the production of vaccines against major human diseases such as malaria and cholera.

Investigators at the University of Central Florida (Orlando, USA) genetically engineered tobacco and lettuce plants by inserting genes into their chloroplasts that encoded for the production of the toxin-B subunit (CTB) of Vibrio cholerae (cholera antigen) fused to malaria vaccine antigens apical membrane antigen-1 (AMA1) and merozoite surface protein-1 (MSP1). More...
Analysis of chloroplasts from the transgenic plants showed that CTB-AMA1 and CTB-MSP1 fusion proteins accumulated up to 13.17% and 10.11% (total soluble protein) in tobacco and up to 7.3% and 6.1% in lettuce, respectively.

To test the efficacy of the plant-produced antigens the investigators administered lyophilized chloroplast proteins either orally or by injection to nine groups of mice (10 animals in each group). Results published in the December 28, 2009, online edition of the journal Plant Biotechnology revealed that animals receiving the plant antigens produced significant levels of antigen-specific antibody titers. These antibodies completely inhibited proliferation of the malaria parasite and cross-reacted with the native parasite proteins in immunoblots and immunofluorescence studies. Protection against cholera toxin challenge correlated with CTB-specific titers of intestinal or serum IgA and IgG1. The vaccinated animals demonstrated long-term (>300 days or 50% of mouse life span) dual immunity against these two major infectious diseases.

"I am very encouraged because our technique worked well and provides an affordable way to get vaccines to people who need them most and can least afford them," said senior author Dr. Henry Daniell, professor of molecular biology and microbiology at the University of Central Florida.

"Producing vaccines in plants is less expensive than traditional methods because it requires less labor and technology," said Dr. Daniell. "We are talking about producing mass quantities for pennies on the dollar, and distribution to mass populations would be easy because it could be made into a simple pill, like a vitamin, which many people routinely take now. There is no need for expensive purification, cold storage, transportation, or sterile delivery via injections."

Related Links:
University of Central Florida



New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Rapid Molecular Testing Device
FlashDetect Flash10
New
Autoimmune Disease Diagnostic
Chorus ds-DNA-G
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.