We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Novel Two-Phase Nanoparticles Readily Diffuse Through Mucus

By LabMedica International staff writers
Posted on 13 Jan 2010
A recent paper described the development of a novel two-phase biodegradable nanoparticle system that readily allows drugs to be delivered through mucus layers into target tissue.

Investigators at Johns Hopkins University (Baltimore, MD, USA) prepared nanoparticles composed of a biodegradable diblock copolymer of poly(sebacic acid) and poly(ethylene glycol) (PSA-PEG), both of which are routinely used in humans. More...
The inner PSA core traps therapeutic agents inside the particles, while the particularly dense outer PEG coating allows the particles to move through mucus.

Results published in the November 9, 2009, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences (PNAS) revealed that in fresh undiluted human cervicovaginal mucus (CVM), which has a bulk viscosity approximately 1,800-fold higher than water, PSA-PEG nanoparticles diffused at an average speed only 12-fold lower than the same particles in pure water. In contrast, similarly sized biodegradable nanoparticles composed of PSA or poly(lactic-co-glycolic acid) (PLGA) diffused at least 3,300-fold slower in CVM than in water. PSA-PEG particles also rapidly penetrated sputum expectorated from the lungs of patients with cystic fibrosis, a disease characterized by exceedingly dense mucus secretions. The rapid transport of the nanoparticles in mucus was made possible by the efficient partitioning of PEG to the particle surface during formulation.

PSA degrades into naturally occurring molecules that are broken down and flushed away by the body through the kidneys. As the particles break down, the drugs loaded inside are released.

"The major advance here is that we were able make biodegradable nanoparticles that can rapidly penetrate thick and sticky mucus secretions, and that these particles can transport a wide range of therapeutic molecules, from small molecules such as chemotherapeutics and steroids to macromolecules such as proteins and nucleic acids," said senior author Dr. Justin Hanes, professor of chemical and biomolecular engineering at Johns Hopkins University. "Previously, we could not get these kinds of sustained-release treatments through the body's sticky mucus layers effectively."

Related Links:
Johns Hopkins University



New
Gold Member
Collection and Transport System
PurSafe Plus®
Collection and Transport System
PurSafe Plus®
Hemodynamic System Monitor
OptoMonitor
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: When assessing the same lung biopsy sample, research shows that only 18% of pathologists will agree on a TCMR diagnosis (Photo courtesy of Thermo Fisher)

Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection

Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.