We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Intracellular pH Determines How Cystic Fibrosis Protein Regulates Ion Transport

By LabMedica International staff writers
Posted on 06 Jan 2010
The protein cystic fibrosis transmembrane conductance regulator (CFTR) is responsible for maintaining the ion channels that move chloride ions and water into and out of cells, and mutations that prevent correct CFTR functioning can lead to the build up of the thick mucous that characterizes cystic fibrosis (CF).

Disease-causing mutations in the CFTR gene prevent the ion channel from functioning properly, leading to a blockage of the movement of salt and water into and out of cells. More...
As a result of this blockage, cells that line the passageways of the lungs, pancreas, and other organs produce abnormally thick, sticky mucus. This mucus obstructs the airways and glands, causing the characteristic signs and symptoms of cystic fibrosis. In addition, while thin mucus can be removed by cilia, thick mucus cannot be removed by cilia, so it traps bacteria that give rise to chronic infections. Approximately 70,000 people worldwide have cystic fibrosis, the majority being children and young adults.

Investigators from the University of Bristol (United Kingdom) studied the effect of pH on CFTR, since changes in pH determine whether the ion channel is open or closed. The experiments were carried out using recombinant CFTR and excised membrane patches.

Results of the study were published in the December 18, 2009, issue of the Journal of Biological Chemistry. The authors reported that acidic pH increased the probability that wild-type CFTR would open the ion channel, whereas alkaline pH decreased this probability and inhibited flow of chloride ions through the channel. Acidic pH potentiated the MgATP (magnesium adenosine triphosphate) dependence of wild-type CFTR by increasing MgATP affinity and enhancing channel activity, whereas alkaline pH inhibited the MgATP dependence of wild-type CFTR by decreasing channel activity.

"The structure of CFTR resembles a turnstile - it has a pathway for chloride movement across the cell border and a gate that controls access to this pathway. Turning of the gate is powered by adenosine triphosphate, or ATP, an energy source for all cells,” explained senior author Dr. David Sheppard, professor of physiology and pharmacology at the University of Bristol. "This work demonstrates that intracellular pH regulates ATP docking with the gate and the speed at which the gate turns. The aim is to design and develop drug therapies that restore function to CFTR proteins disabled by CF mutations. By targeting the root cause of the disease, rather than the symptoms, new drug therapies for CF might stop disease progression and prevent the decline in health of individuals living with CF.”

Related Links:
University of Bristol



New
Gold Member
Automatic CLIA Analyzer
Shine i9000
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: A blood biomarker test offers a clearer prognosis after cardiac arrest (Photo courtesy of Adobe Stock)

Blood Biomarker Improves Early Brain Injury Prognosis After Cardiac Arrest

After a cardiac arrest, many patients remain unconscious for days, leaving doctors and families facing uncertainty about whether meaningful recovery is possible. Current tools to assess brain damage, including... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.