We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Computer Modeling to Help Predict Drug Failure

By LabMedica International staff writers
Posted on 26 May 2009
A team of pharmacologists and computer specialists has designed a program to analyze the failure of the cholesterol-lowering drug torcetrapib, which was withdrawn from clinical trials after causing fatal cardiovascular disease.

Torcetrapib acts by inhibiting cholesteryl ester transfer protein (CETP), which normally transfers cholesterol from HDL cholesterol to very low density or low-density lipoproteins (VLDL or LDL). More...
Inhibition of this process results in higher HDL levels. Its development was halted in 2006, after more than 15 years of development at a cost of nearly $850 million, when phase III studies showed excessive all cause mortality in the treatment group receiving a combination of atorvastatin (Lipitor) and torcetrapib.

Investigators at the University of California, San Diego (USA) developed a novel computer program to study torcetrapib's protein-ligand binding profiles on a genome-wide scale. They reported in the May 15, 2008, online edition of the journal PLoS Computational Biology that torcetrapib binding was not limited to a specific receptor. Instead, torcetrapib actually acted on a dozen different receptors, resulting in unanticipated side effects. Binding to each receptor triggered changes in the activity of a molecular pathway. A combination of changes in many different pathways led to the overall physiological effect of the drug.

"This work extends the scope of chemogenomics - the study of genomic responses to chemical compounds - and exemplifies the role that systems biology has in the future of drug discovery," explained senior author Dr. Philip E. Bourne, professor of bioinformatics at the University of California, San Diego. "Torcetrapib actually acted on a dozen different receptors, resulting in an unanticipated side effect. This multi-inhibitor binding pattern may not be at all unusual. At this time we do not have a complete structural proteome to analyze, one that maps all the protein structures in the genome - either experimental or model - to which drugs could bind. So though we still may not have a complete understanding of off-target binding, this strategy is already useful."

Related Links:
University of California, San Diego



Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Collection and Transport System
PurSafe Plus®
Pipette
Accumax Smart Series
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: Private equity firms Blackstone and TPG have joined forces to acquire Hologic in a major healthcare deal (Photo courtesy of Hologic)

Hologic to be Acquired by Blackstone and TPG

Hologic (Marlborough, MA, USA) has entered into a definitive agreement to be acquired by funds managed by Blackstone (New York, NY, USA) and TPG (San Francisco, CA, USA) in a transaction valued at up to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.