We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Stem Cells Replace Stroke-Damaged Tissue in Lab Rats

By LabMedica International staff writers
Posted on 23 Mar 2009
Successful stem cell treatment for strokes has taken a significant step forward as scientists reveal how they have replaced stroke-damaged brain tissue in rats.

The team of scientists project is funded by the Biotechnology and Biological Sciences Research Council (BBSRC; Swindon, UK) and led by Dr. More...
Mike Modo of the Institute of Psychiatry, King's College London (UK). The study, performed at the Institute of Psychiatry and University of Nottingham (UK), shows that by inserting tiny scaffolding with stem cells attached, it is possible to fill a hole left by stroke damage with brand new brain tissue within seven days. The study was published in the March 2009 issue of the journal Biomaterials.

Earlier studies where stem cells have been injected into the void left by stroke damage have had some success in improving outcomes in rats. The difficulty is that in the damaged area there is no structural support for the stem cells and so they are apt to migrate into the surrounding healthy tissues instead of filling up the hole left by the stroke. Dr. Modo noted, "We would expect to see a much better improvement in the outcome after a stroke if we can fully replace the lost brain tissue, and that is what we have been able to do with our technique.”

Using individual particles of a biodegradable polymer called poly(lactide-co-glycolide) (PLGA) that have been loaded with neural stem cells, the team of scientists have filled stroke cavities with stem cells on a ready-made support structure. Dr. Modo continued, "This works really well because the stem cell-loaded PLGA particles can be injected through a very fine needle and then adopt the precise shape of the cavity. In this process the cells fill the cavity and can make connections with other cells, which helps to establish the tissue. Over a few days we can see cells migrating along the scaffold particles and forming a primitive brain tissue that interacts with the host brain. Gradually, the particles biodegrade, leaving more gaps and conduits for tissue, fibers, and blood vessels to move into.”

The research utilizes a magnetic resonance imaging (MRI) scanner to target precisely the correct place to inject the scaffold-cell structure. MRI is also used to monitor the development of the new brain tissue over time. The next stage of the study will be to include a factor called vascular endothelial growth factor (VEGF) with the particles. VEGF will encourage blood vessels to enter the new tissue.

Related Links:

King's College London
University of Nottingham
Biotechnology and Biological Sciences Research Council




Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Collection and Transport System
PurSafe Plus®
New
8-Channel Pipette
SAPPHIRE 20–300 µL
New
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The nanotechnology-based liquid biopsy test could identify cancer at its early stages (Photo courtesy of 123RF)

2-Hour Cancer Blood Test to Transform Tumor Detection

Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.