We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Systems Biology Used To Study Cellular Glycomics in White Blood Cells

By LabMedica International staff writers
Posted on 12 Nov 2008
Two recent papers have presented the results of attempts to use a systems biology approach to understand the cellular glycome. More...
The glycome represents a cell's total sugar or carbohydrate composition. It has been described as exceeding the complexity of the proteome because of the even greater diversity of the glycome's constituent carbohydrates, and is further complicated by the sheer multiplicity of possibilities in the combination and interaction of the carbohydrates with each other and with proteins.

Systems biology is a mathematical and experimental approach that focuses on whole systems of complex biological functions and interactions instead of studying individual units, such as a single gene or protein, in isolation. Investigators at the University at Buffalo (NY, USA) used this approach to examine the relationship between gene expression, glycosyltransferase activity, glycan expression, and selectin-binding function in different cell systems, including human neutrophils, undifferentiated HL-60 (human promyelocytic cells), differentiated HL-60, and HL-60 synchronized in specific growth phases. Selectins are a large family of membrane proteins that bind oligosaccharides on other cells tightly and specifically, and are involved in signal transduction across the plasma membrane.

Their results were published in two papers. The first article, which appeared in the August 26, 2008, online edition of The FASEB Journal, described the experimental techniques used to measure enzyme reaction rates involved in glycosylation, and then drew critical correlations with gene expression, enzyme kinetics, and the structures of glycans. The second paper, which was published in the October 7, 2008, online edition of the journal Bioinformatics, described a computer model that utilized the data produced by those experiments to establish a basis for predicting the structures of glycans on cell surfaces.

"Our goal is to find ways to alter carbohydrate structures or glycans on the surfaces of white blood cells,” explained senior author Dr. Sriram Neelamegham, professor of chemical and biological engineering at the University of Buffalo. "Systems biology is well suited to this research because it helps us develop the mathematical concepts to enable us to influence and enhance our understanding of how the glycome functions. This then produces clues on how we might manipulate the adhesivity of white blood cells to the blood vessel wall.”

"The data produced experimentally allows us to determine key steps in the glycome reaction network that controls the final glycan structure that appears on cells,” said Dr. Neelamegham. "This approach then provides an in silico tool that can be applied to perturb the system of interest, such as the glycosylation network.”

Related Links:
State University of New York, University at Buffalo


New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Portable Electronic Pipette
Mini 96
New
8-Channel Pipette
SAPPHIRE 20–300 µL
New
Blood Glucose Test Strip
AutoSense Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The nanotechnology-based liquid biopsy test could identify cancer at its early stages (Photo courtesy of 123RF)

2-Hour Cancer Blood Test to Transform Tumor Detection

Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.