We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Dose-Efficient X-Ray Imaging Method Produces Micrometer Resolution Images of Biopsy Samples

By LabMedica International staff writers
Posted on 20 Dec 2023

X-ray imaging plays a vital role in revealing the hidden structures and processes within living cells and organisms. However, the ionizing nature of X-ray radiation, composed of high-energy electromagnetic waves, poses a risk of damaging DNA, which in turn limits the duration of observation. Traditional X-ray imaging of soft tissues often results in low-contrast images, but phase contrast methods have been found to yield much clearer contrasts at lower radiation doses. However, achieving higher resolution in X-ray imaging is challenging due to the need for increased radiation dose, which is compounded by the reduced efficiency of high-resolution detectors, leading to further increase in radiation exposure. Until now, high-resolution X-ray phase contrast imaging of living biological samples could only be performed for a limited time before radiation caused significant damage.

At the Karlsruhe Institute of Technology (KIT, Karlsruhe, Germany), a team of researchers has innovated a technique that utilizes radiation more effectively and achieves micrometer-level resolution imaging. This method is suitable for observing both living organisms and delicate materials, opening new possibilities in fields like biology, biomedicine, and materials science. The novel system integrates X-ray phase contrast imaging with a Bragg magnifier and a photon-counting detector. In this setup, a photon-counting detector with 55-micrometer pixel size is used, and before capturing the specimen’s X-ray image, it is magnified using a Bragg magnifier. This magnification process allows the specimen's resolution to reach approximately 1 micrometer. The Bragg magnifier itself comprises two perfectly aligned silicon crystals, where the magnification effect is derived from asymmetric diffraction in the crystal lattice of silicon. A significant benefit of this Bragg magnifier is its exceptional optical image transmission, enabling almost complete replication of all spatial frequencies up to the resolution limit.

By combining propagation-based X-ray phase contrast with a Bragg magnifier and a photon-counting detector, all fine-tuned for 30 keV X-ray energy, the method achieves near-maximal dose efficiency for X-ray phase contrast imaging. This advancement permits extended observation periods of small living organisms with detailed micrometer resolution. The team showcased this technique in a preliminary study on tiny parasitic wasps, observing their activities inside host eggs and their emergence over more than 30 minutes. Future plans involve enhancing the setup to expand the field of view and boost mechanical stability, thereby enabling even longer measurement durations.

“Instead of converting the X-ray image into an image with visible light and enlarging it afterwards, we enlarge it directly,” said LAS doctoral researcher Rebecca Spiecker. “Thanks to this approach, we can use highly efficient large-area detectors. The method is also suited for biomedical applications, an example being the gentle three-dimensional histological investigation of biopsy samples.”

Related Links:
KIT

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.