We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Synthetic Biomarker Technology Differentiates Between Prior Zika and Dengue Infections

By LabMedica International staff writers
Posted on 14 May 2024
Print article
Image: The new technology could lead to the development of better diagnostics (Photo courtesy of Amro Nasser, University of Pittsburgh)
Image: The new technology could lead to the development of better diagnostics (Photo courtesy of Amro Nasser, University of Pittsburgh)

Until now, researchers and clinicians have lacked diagnostic tools to easily differentiate between past infections with different flaviviruses—a family of mostly mosquito- and tick-borne viruses that include Zika and dengue. This challenge has hindered clinical-epidemiologic studies, viral diagnostics, and vaccine development. Antibodies for Zika virus, a mosquito-borne virus that spread to the Americas in 2015 and continues to cause sporadic outbreaks, can often be mistaken for dengue virus antibodies in many diagnostic tests. This confusion makes it difficult to determine if a person who tests positive had dengue, Zika, or both. For reproductive-age women, it is particularly crucial to know if they have had Zika and likely have immunity since infection during pregnancy can lead to birth defects. Knowing their immunity status can guide their efforts to avoid mosquito bites in endemic areas during pregnancy. Now, a newly discovered Zika virus-specific synthetic molecule can distinguish Zika-immune patient samples from those previously infected with dengue virus. This technology may lead to the development of better diagnostics and vaccine candidates.

The study, led by researchers at the University of Pittsburgh (Pittsburgh, PA, USA) and The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology (Jupiter, FL, USA), is the first to apply the novel “epitope surrogate” technology to Zika. The research team utilized an approach pioneered by co-senior author Thomas Kodadek, Ph.D., a chemist with The Wertheim UF Scripps Institute, to screen half a million “peptide-inspired conformationally constrained oligomers,” or PICCOs, against blood samples from individuals infected with either dengue or Zika virus. PICCOs are nonorganic molecular shapes attached to microscopic plastic beads that mimic epitopes—the parts of a pathogen that an antibody would bind to in order to neutralize the threat.

If any of the PICCOs match the shape of an antibody in the blood sample, the antibody will bind to them, allowing researchers to "fish" it out. The presence of an antibody against a virus in a person's blood indicates a past infection or vaccination, prompting the immune system to produce antibodies. The researchers identified 40 PICCOs that interacted with Zika virus antibodies. After screening these against dengue-positive blood, one PICCO, named CZV1-1, was particularly effective at binding Zika antibodies but not dengue antibodies. This single CZV1-1 PICCO synthetic molecule correctly identified individuals previously infected with Zika virus 85.3% of the time and produced false positives in only 1.6% of tests, rates comparable to COVID-19 antibody tests. Notably, the PICCO screening technology used to identify the Zika-specific molecule does not require refrigeration and could also be adapted for other outbreaks.

“The technology is amazing. You don’t need to know the sequence, or the structure, or even the pathogen,” said co-senior author Donald Burke, M.D., Pitt Public Health dean emeritus. “As long as you have chosen the right sets of patient blood samples to compare, you can tease out the important antibodies that differ between the patient sets, along with the corresponding synthetic molecule biomarkers.”

Related Links:
University of Pittsburgh
The Wertheim UF Scripps Institute

New
Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Drug Detection Platform
ABSOLUDY Drug Detection Platform
New
Whole Blood-Based Controls
Lyphochek Hemoglobin A1C Linearity Set

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The new platelet-centric scoring system predicts platelet hyperreactivity and related risk of cardiovascular events (Photo courtesy of Shutterstock)

Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke

Platelets, which are cell fragments circulating in the blood, play a critical role in clot formation to stop bleeding. However, in some individuals, platelets can become "hyperreactive," leading to excessive... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Pathology

view channel
Image: The ChatGPT-like AI model can diagnose cancer, guide treatment choice, predict survival across multiple cancer types (Photo courtesy of 123RF)

AI Tool Diagnoses Cancer, Guides Treatment and Predicts Survival Across Multiple Cancer Types

Current artificial intelligence (AI) models are typically specialized, designed for specific tasks like detecting cancer or predicting tumor genetics, and are limited to a few cancer types.... Read more

Industry

view channel
Image: Roche has expanded its digital pathology open environment with more than 20 AI algorithms (Photo courtesy of Roche)

Roche Expands Digital Pathology Open Environment with Integration of Advanced AI Algorithms from New Collaborators

Roche (Basel, Switzerland) has expanded its digital pathology open environment by integrating over 20 advanced artificial intelligence (AI) algorithms from eight new collaborators. These strategic collaborations... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.