We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App




Biomarker Panel for Risk of Early Respiratory Failure Following Hematopoietic Cell Transplantation

By LabMedica International staff writers
Posted on 23 Feb 2022
Print article
Image: The Orbitrap Fusion Lumos Tribrid Mass Spectrometer is an advanced performance mass spectrometry system that can be upgraded to even higher resolution (1M), additional dissociation capabilities (UVPD and ETD), and a unique internal calibration (IC) (Photo courtesy of Thermo Fisher Scientific)
Image: The Orbitrap Fusion Lumos Tribrid Mass Spectrometer is an advanced performance mass spectrometry system that can be upgraded to even higher resolution (1M), additional dissociation capabilities (UVPD and ETD), and a unique internal calibration (IC) (Photo courtesy of Thermo Fisher Scientific)

This study identified and validated ST2, WFDC2, IL6 and TNFR1 as risk biomarkers for respiratory failure and related mortality post-HCT.

Allogeneic hematopoietic cell transplantation (HCT) is a life-saving therapy used for malignant and nonmalignant diseases. However, post-HCT pulmonary complications continue to be a significant problem. When severe, pulmonary complications can result in respiratory failure (RF) affecting 10% to 23% of patients.

Currently, there is no simple blood test to guide the susceptibility for RF in the HCT recipient. While some candidate proteomic biomarkers have been studied in the general adult population to prognosticate the severity and mortality associated with acute respiratory distress syndrome (ARDS), little data exist on biomarkers that can predict the development of RF, particularly in children.

A multidisciplinary team of scientist from several institutions and led by the Indiana University School of Medicine (Indiana, IN, USA) included in a study four cohorts of HCT patients (discovery, training, validation, and independent cohorts). The first three cohorts were constituted from a larger HCT study for graft versus host disease consisting of 415 consecutive allogeneic HCT patients prospectively enrolled from 2013 through 2018 at six large USA academic health centers. The patient population was predominantly children, but did include some adults.

Labeled peptide samples were combined into one sample that was fractionated by basic reverse phase chromatography, and pooled fractions were analyzed. The team used tandem mass-spectrometry discovery with an Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) and compared plasma obtained at day 14 post-HCT from 15 patients with RF versus 15 patients without RF. Plasma samples were prospectively collected, frozen, and stored. Plasma samples were used at day 14 and day 7 post-HCT, which were time points prior to the onset of RF in our discovery cohort (Day +24 post-HCT). Proteins were measured in samples from the training and validation cohorts using commercially available enzyme-linked immunosorbent assays (ELISA) using a sequential ELISA approach.

The investigators reported that of the six markers, ST2, WFDC2, IL6, and TNFR1 measured at day 14 post-HCT had the most significant association with increased risk for RF in the training cohort: ST2: Hazard Ratio (HR) 4.5, WFDC2: HR 4.2, IL6: HR 6.9, and TFNR1: HR 6.1, and in the validation cohort: ST2: HR 23.2, WFDC2: HR 18.2, IL6: HR 12.2,, and TFNR1: HR 16.1, after adjusting for conditioning regimen.

The authors concluded that high levels of ST2, WFDC2, IL6 and TNFR1 measured as early as day 7 post-HCT are associated with the development of RF within the first 100 days post-HCT and with mortality with RF. Not only do these biomarkers offer objective data to begin to identify the highest risk patients that may benefit from early intervention, they may also hold promise for therapeutic targets to alter the course and outcome of RF. The study was published on February 9, 2022 in the journal Blood Advances.

Related Links:
Indiana University School of Medicine 
Thermo Fisher Scientific 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.