We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Somatic Evolution Identified in Non-Neoplastic IBD-Affected Colon

By LabMedica International staff writers
Posted on 06 Aug 2020
Print article
Image: The NovaSeq 6000 Sequencing System offers high-throughput sequencing across a broad range of applications (Photo courtesy of Illumina).
Image: The NovaSeq 6000 Sequencing System offers high-throughput sequencing across a broad range of applications (Photo courtesy of Illumina).
Inflammatory bowel disease (IBD) is a debilitating disease characterized by repeated flares of intestinal inflammation. The two major subtypes of IBD, Crohn’s disease (CD) and ulcerative colitis (UC) are distinguished by the location, continuity, and nature of the inflammatory lesions.

UC affects only the large intestine, spreading continuously from the distal to proximal colon, whereas CD most commonly affects the small and large intestine and is characterized by discontinuous bouts of inflammation. In addition to the significant morbidity associated with the disease, IBD patients have a 1.7-fold increased risk of developing gastrointestinal cancers compared to the general population.

A large team of scientists led by the Wellcome Sanger Institute (Hinxton, UK) whole-genome sequenced 446 colonic crypts from 46 IBD patients and compared these to 412 crypts from 41 non-IBD controls from a previous publication on the mutation landscape of the normal colon. Samples from the first 19 patients were whole genome sequenced on XTEN machines (Illumina, San Diego, CA, USA) and samples from other patients were whole genome sequenced on Illumina Htp NovaSeq 6000. Base substitution calling was carried out in four steps: Discovery, filtering of the discovery set, genotyping and filtering of the genotypes. Mutations were first called using the Cancer Variants through Expectation Maximization (CaVEMan) algorithm.

The investigators analyzed mutations in the colonic crypts in combination with information on IBD patients' age, the location of the tissue samples biopsied from the gut, and the extent of disease. Their search highlighted non-synonymous alterations affecting genes such as ARID1A, FBXW7, PIGR, ZC3H12A, and genes from the interleukin 17 and the Toll-like receptor pathways. Along with more extensive clonal expansions involving somatic mutations in samples from the IBD-affected individuals, the team noted that mutations tended to occur in genes that appear to be subject to positive selection in individuals with IBD.

Peter Campbell, MD, PhD, Head of Cancer Genetics and Genomics and co-senior author of the study, said, “These approaches have given us unique insights into the effects of inflammatory bowel disease on the DNA sequence of the inflamed tissue. The findings point to the possibility of using somatic alteration clues to understand IBD and other common diseases beyond cancer. It is exciting to see the methods that we and others have used to understand cancers now being applied to other common diseases.” The study was published on July 21, 2020 in the journal Cell.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.