We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




First Ever Technique Identifies Single Cancer Cells in Blood for Targeted Treatments

By LabMedica International staff writers
Posted on 04 Apr 2024

The global medical community is increasingly recognizing liquid biopsy as a transformative approach to enhancing cancer patient care. More...

This innovative diagnostic method involves detecting and analyzing circulating tumor DNA, circulating tumor RNA (including microRNA, long non-coding RNA, and messenger RNA), DNA or RNA from exosomes, and circulating tumor cells (CTCs) in the bloodstream. Originating from primary tumors or metastases, CTCs are cancer cells that can be found as individual cells or as clusters in peripheral blood. Despite advancements, accurately quantifying CTCs remains challenging, creating the need for a reliable method that can universally identify CTCs from various tumors, swiftly, efficiently, and with minimal disruption to patient care. A pioneering study has now demonstrated a technique that can identify single cancer cells in a blood sample, opening doors to more customized and targeted cancer treatments.

A team of academics including researchers from Keele University (Keele, UK) employed Fourier Transform Infrared (FTIR) microspectroscopy, a technique for separating cells based on their biochemical composition using infrared light. For the first time, combining FTIR microspectroscopy with a machine learning algorithm led to the successful identification of a single lung cancer cell in a blood sample. This breakthrough supports the move towards personalized medicine, which significantly enhances patient treatment by customizing therapies to match individual profiles and cancer types.

By leveraging this technique to detect individual tumor cells in the bloodstream, it becomes possible to more accurately evaluate patients at various stages of cancer care, from initial diagnosis and staging to monitoring treatment responses and ongoing surveillance. This advancement could refine the personalized medicine strategy, offering a more precise alternative to current cancer cell detection methods. Following this initial success, the research team has received approval to extend their study to include blood samples from patients with a variety of cancers, beyond lung cancer, aiming to validate the effectiveness of this technique across different cancer types.

“Identifying cancer cells in blood using this technique could be a game-changer in the management of patients with cancer,” said Josep Sulé-Suso, Professor of Oncology at Keele University.

Related Links:
Keele University


Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Silver Member
PCR Plates
Diamond Shell PCR Plates
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Neuron-derived extracellular vesicles carry many biomarker candidates for Alzheimer’s (S Chinnathambi et al., Brain Network Disorders (2025). doi.org/10.1016/j.bnd.2024.12.006)

Neuron-Derived Extracellular Vesicles Could Improve Alzheimer’s Diagnosis

Alzheimer’s disease is becoming increasingly common as global populations age, yet effective treatments for advanced stages remain limited. Early detection is therefore critical, but current diagnostic... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.