We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App




Blood Sphingolipidomics Associated with Lupus Cardiovascular Comorbidity

By LabMedica International staff writers
Posted on 04 Dec 2019
Print article
Image: The Quantum Access triple quadruple mass spectrometer (Photo courtesy of Thermo Scientific)
Image: The Quantum Access triple quadruple mass spectrometer (Photo courtesy of Thermo Scientific)
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with heterogeneous organ involvement and severity. The cause of SLE is unknown, and there is at present no cure. The majority of people with lupus are females, and African-American women are three times more likely than White women to have lupus and develop severe symptoms.

The risk for cardiovascular disease (CVD) is almost ten times higher in patients with autoimmune diseases than in the general population. Despite the dyslipidemia and accelerated CVD associated with SLE, the significance of the conventional plasma lipid panel (e.g., cholesterol and triglycerides) in the diagnosis/prognosis of CVD in SLE patients has been in question.

Scientists from the Medical University of South Carolina (Charleston, SC, USA) enrolled 411 new lupus and 141 control participants since April, 2013. Plasma samples have been collected, often across multiple visits, from 358 lupus patients and 179 healthy controls that were negative for autoimmune disease. For this study, 73 female SLE patients and 34 unrelated controls were selected from the cohorts for comparison of their sphingolipid profiles.

Mass spectroscopy was used to measure plasma levels of individual species of five classes of sphingolipids: Cers, sphingoid bases: sphingosine and dihydrosphingosine (dhSph) and their phosphates (S1P and dhSph-1P, respectively), SM, and hexosyl- and lactosylceramides (Hex-Cer and Lact-Cer, respectively). The sphingolipids in plasma extracts were separated and their masses quantitated using high performance liquid chromatography-tandem mass spectrometry. Lipids eluted during chromatography were detected and quantitated using a Quantum Access triple quadruple mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with an electrospray ion source (ESI) operating in multiple reaction monitoring (MRM) positive ion mode.

The scientists reported that compared to African-American controls, African-American SLE patients had higher levels of ceramides, hexosylceramides, sphingosine and dihydrosphingosine 1-phosphate. Compared to White controls, White SLE patients exhibited higher levels of sphingoid bases and their phosphates, but lower ratios of C16:0 ceramide/sphingosine 1-phosphate and C24:1 ceramide/sphingosine 1-phosphate. White SLE patients with atherosclerosis exhibited lower levels of sphingoid bases compared to White SLE patients without atherosclerosis. In contrast, African-American SLE patients with atherosclerosis had higher levels of sphingoid bases and sphingomyelins compared to African-American SLE patients without atherosclerosis. Compared to White SLE patients with atherosclerosis, African-American SLE patients with atherosclerosis had higher levels of select sphingolipids.

Samar M. Hammad, PhD, associate professor in the Department of Regenerative Medicine and Cell Biology and first author of the study, said, “We know that the African American community has higher high-density lipoprotein (HDL) cholesterol, which is a good thing, and lower triglycerides, which is a good thing, but nonetheless, they have more heart disease than the white population. So it is about time to start looking at other molecules and other markers that can explain, at least in part, why African Americans develop more cardiovascular disease, and that's particularly true in autoimmune diseases such as lupus and Type 1 diabetes.” The study was published on November 20, 2019 in the journal PLOS ONE.

Related Links:
Medical University of South Carolina
Thermo Fisher Scientific


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.