We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Signature for Beta-Cell Autoimmunity Predicts Type 1 Diabetes

By LabMedica International staff writers
Posted on 28 Aug 2019
Print article
Image: Human pancreatic islet stained with glucagon antibody (red) and insulin antibody (blue). Glucagon is produced by alpha cells, while beta cells produce insulin (Photo courtesy of University of Turku).
Image: Human pancreatic islet stained with glucagon antibody (red) and insulin antibody (blue). Glucagon is produced by alpha cells, while beta cells produce insulin (Photo courtesy of University of Turku).
The appearance of Type 1 diabetes (T1D)-associated autoantibodies is the first and only measurable parameter to predict progression toward T1D in genetically susceptible individuals.

However, autoantibodies indicate an active autoimmune reaction, wherein the immune tolerance is already broken. Therefore, there is a clear and urgent need for new biomarkers that predict the onset of the autoimmune reaction preceding autoantibody positivity or reflect progressive beta-cell destruction.

A team of scientists working with the University of Turku (Turku, Finland) used mRNA-sequencing-based analysis of 306 samples including fractionated samples of CD4+ and CD8+ T cells as well as CD4-CD8- cells fractions and unfractionated peripheral blood mononuclear cell (PBMC) samples longitudinally collected from seven children that developed beta-cell autoimmunity (Cases) at a young age and their matched controls.

The investigators identified transcripts, including interleukin-32 (IL32) that were upregulated before T1D-associated autoantibodies appeared. Single-cell RNA-seq studies revealed that high IL32 in Case samples were contributed mainly by activated T cells and NK cells. Further, they showed that IL32 expression can be induced by a virus and cytokines in pancreatic islets and beta-cells, respectively.

The authors concluded that their results provide a basis for early detection of aberrations in the immune system function before T1D and suggest a potential role for IL32 in the pathogenesis of T1D. Riitta Lahesmaa, MD, a Professor of Biotechnology and senior author of the study, said, “Our results provide a starting point for identifying those children who are likely to develop type 1 diabetes later. Next, we will validate and expand the study in a larger cohort and analyze the role of the signature molecules in the pathogenesis of type 1 diabetes. Our goal is to develop tools and means that would enable the prevention of type 1 diabetes.” The study was published in the July 2019 issue of the journal Diabetes.

Related Links:
University of Turku

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.