We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us


Provides full range of instrumentation, reagent kits, software and quality control systems to clinical laboratories. ... read more Featured Products: More products

Download Mobile App

Automated Immunohematology Approaches Can Resolve Transplant Incompatibility

By LabMedica International staff writers
Posted on 29 Jan 2024
Print article
Image: The IH-500 System is setting new standards immunohematology testing (Photo courtesy of Bio-Rad)
Image: The IH-500 System is setting new standards immunohematology testing (Photo courtesy of Bio-Rad)

The persistent global shortage of donor organs has made the availability of ABO-compatible options a rarity for many hospitals, clinicians, and patients requiring organ transplants. Despite this, advancements in desensitization therapies have made ABO-incompatible organ transplants not only possible but also as successful as compatible transplants. For instance, it has become common for patients with blood group O to receive organs from donors with type A2 blood, a subgroup of the A blood type that expresses fewer antigens. In such cases, the recipient's plasma can be treated using an immune-adsorption column to reduce the anti-A antibody concentration. Alternatively, when this method is not available, plasmapheresis can be utilized to exchange plasma and reduce the titer of anti-A. The reduction in antibody production can also be achieved through standard immunosuppressants and monoclonal antibodies like rituximab.

The titration of relevant ABO blood group antibodies is crucial in managing potentially incompatible organ transplants. The results from titrations help determine the likely success of a transplant procedure with the appropriate immunosuppressive treatment. Additionally, titrations are useful for monitoring antibody production post-transplant and assessing the risk of antibody-mediated rejection later on. Despite its clinical importance, many hospital labs do not routinely perform titration due to its labor-intensive nature, the high skill level required, and the difficulty in interpreting results. Manual titration also suffers from inherent imprecision due to variations in dilution preparation, dilution medium, red blood cell phenotype and the reaction reading which is difficult to standardize.

This issue is further exacerbated by a decrease in new immunohematologists entering the profession, leading to staffing shortages. This, coupled with increased workloads and financial constraints, makes it harder for hospital labs to offer this service and provide timely, definitive results. Consequently, there is a growing need for hematology labs to automate antibody titration to reduce turnaround times and improve result reliability. Automated immunohematology platforms, such as the IH-500 NEXT System from Bio-Rad Laboratories (Hercules, CA, USA), offer a viable solution, enabling local facilities to perform fully automated titrations. The adoption of automation in numerous immunohematology labs has proven successful, allowing them to provide results to doctors within hours on the same day a blood sample is drawn. This quick turnaround is crucial for efficiently allocating donated organs to needy patients and preventing antibody-mediated organ rejection.

Automation also offers greater precision and standardization, as it prevents technical and manual errors. This reduces the need for extensive training and experience, allowing a broader range of staff to perform antibody titrations and analyze the results. This shift can reduce the load on highly skilled specialists, further shortening the time to results. The widespread adoption of automated titration is essential for supporting future transplant services, ensuring that patients receive the critical organ donations they need as soon as possible.

Related Links:
Bio-Rad Immunohematology

Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Rickettsia Conorii Assay

Print article


Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more


view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more


view channel
Image: The Simplexa C. auris direct kit is a real-time polymerase chain reaction assay run on the LIAISON MDX instrument (Photo courtesy of Diasorin)

Novel Molecular Test to Help Prevent and Control Multi Drug-Resistant Fungal Pathogen in Healthcare Settings

Candida auris (C. auris) is a rapidly emerging multi drug-resistant fungal pathogen that is commonly found in healthcare environments, where it presents a challenge due to its ability to asymptomatically... Read more


view channel
Image: The tool can improve precision oncology by accurately predicting molecular subtypes and therapy responses (Photo courtesy of Shutterstock)

Computational Tool Integrates Transcriptomic Data for Improved Breast Cancer Diagnosis and Treatment

Breast cancer is the most commonly diagnosed cancer globally, presenting in various subtypes that require precise identification for effective, personalized treatment. Traditionally, cancer subtyping has... Read more


view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.