We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Portable Device Developed for Early-Stage Malaria Detection

By LabMedica International staff writers
Posted on 13 Jun 2018
Print article
Image: The portable optical diagnostics system (PODS) prototype for diagnosing malaria (Photo courtesy of University of Southern California).
Image: The portable optical diagnostics system (PODS) prototype for diagnosing malaria (Photo courtesy of University of Southern California).
Over 216 million people were infected with malaria in 2016, and 445,000 individuals died from the disease. The key to solving this health crisis is early-stage diagnosis when malaria therapeutics are most effective.

There are two standard ways of diagnosing malaria, yet both have limitations. The first involves taking a blood sample from a person and looking at it underneath a microscope for red blood cells that have been infected with the malaria parasite. Another method are the rapid diagnostic tests.

Bioengineers at the University of Southern California (Los Angeles, CA, USA) have developed a portable, magneto-optic technology for early stage malaria diagnosis based on the detection of the malaria pigment, hemozoin. The portable optical diagnostics system (PODS) prototype detects a byproduct generated by all species of the malaria parasite, as such; it is a rapid screening for all malaria strains. Because the amount of hemozoin in the blood is directly related to how far the malaria infection has progressed, it is an ideal indicator of infection.

By applying a magnet, it is possible to manipulate and move the hemozoin particles within a test tube around, or move them in and out of the laser beam. In this way, a single sample can be used to perform two measurements, and every diagnosis is personalized. If hemozoin is present, even in minute concentrations, the signals change. On average, it takes between 10 to 15 minutes for the signal to stabilize, and a larger difference between the two measurements indicates that the malaria has progressed farther. The scientists used β-hematin, a hemozoin mimic, and they demonstrated detection limits of less than 0.0081 μg/mL in 500 μL of whole rabbit blood with no additional reagents required. This level corresponds to less than 26 parasites/μL, a full order of magnitude below clinical relevance and comparable to or less than existing technologies.

Andrea Martin Armani, PhD, a professor of Chemical Engineering and Materials Science, and senior author of the study, said, “Malaria primarily impacts low-resource environments where supply chain management is difficult and access to power can be unreliable. Therefore, an effective malaria diagnostic must be independent of these.” The study was published on May 21, 2018, in the journal ACS Sensors.

Related Links:
University of Southern California

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.