We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Metabolite Biomarkers of Chronic Typhoid Carriage Detected

By LabMedica International staff writers
Posted on 12 Feb 2018
Print article
Image: The Pegasus 4D comprehensive 2D gas chromatography with TOF MS (Photo courtesy of LECO).
Image: The Pegasus 4D comprehensive 2D gas chromatography with TOF MS (Photo courtesy of LECO).
Detecting chronic carriers of typhoid is of public health relevance in areas where enteric fever is endemic, but there are no routinely used methods for prospectively identifying those carrying Salmonella in their gallbladder.

Salmonella Typhi and Salmonella Paratyphi A are the agents of enteric (typhoid) fever; both can establish chronic carriage in the gallbladder. Chronic Salmonella carriers are typically asymptomatic, intermittently shedding bacteria in the feces, and contributing to disease transmission.

Scientists from Umeå University (Umeå, Sweden) and their international colleagues collected blood samples patients undergoing cholecystectomy at a hospital in Nepal from June 2007 to October 2010. Stool sample were collected for microbiological culture Surgeons collected bile samples and gallbladder tissue during the procedure. After recruiting 1,377 cholecystectomy patients over three years and culturing their bile they identified 24 and 22 individuals with S. Typhi and S. Paratyphi A inside their gallbladder, respectively; 35/46 (76%) were female and the median age was 34.5 years (range; 20–67).

The team used two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GCxGC-TOFMS) and supervised pattern recognition modeling. Extracted and derivatized plasma samples were analyzed, in a random order (within the analytical batches), on a Pegasus 4D (LECO Corporation, St Joseph, MI, USA) equipped with an Agilent 6890 gas chromatograph, a secondary gas chromatograph oven, a quad-jet thermal modulator, and a time-of-flight mass spectrometer.

The scientists were able to significantly discriminate Salmonella carriage samples from non-carriage control samples. They were also able to detect differential signatures between S. Typhi and S. Paratyphi A carriers. The team additionally compared carriage metabolite profiles with profiles generated during acute infection; these data revealed substantial heterogeneity between metabolites associated with acute enteric fever and chronic carriage. Lastly, they found that Salmonella carriers could be significantly distinguished from non-carriage controls using only five metabolites, indicating the potential of these metabolites as diagnostic markers for detecting chronic Salmonella carriers.

The authors concluded that their novel approach highlights the potential of using metabolomics to search for diagnostic markers of chronic Salmonella carriage. They identified metabolite patterns signifying carriage of S. Typhi and S. Paratyphi A in the gallbladder among a cohort of patients with cholelithiasis in Nepal. These findings are encouraging in the search for a diagnostic assay that may be able to access the reservoirs of S. Typhi and S. Paratyphi A carried asymptomatically within human populations. The study was published on January 26, 2018, in the journal Public Library of Science Neglected Tropical Diseases.

Related Links:
Umeå University
LECO Corporation

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.