We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Cellular Mechanism Identified for Severe Viral Hepatitis

By LabMedica International staff writers
Posted on 29 Jan 2018
Print article
Image: T regulatory cells (also known as Tregs or Regulatory T cells) are essential cells that suppress immune responses of other cells, designed to limit excessive reactions and prevent autoimmunity. Tregs are characterized by the expression of CD4+, CD25+,and Foxp3+, while lacking CD127 (Photo courtesy of BioLegend).
Image: T regulatory cells (also known as Tregs or Regulatory T cells) are essential cells that suppress immune responses of other cells, designed to limit excessive reactions and prevent autoimmunity. Tregs are characterized by the expression of CD4+, CD25+,and Foxp3+, while lacking CD127 (Photo courtesy of BioLegend).
It is known that activated immune cells of patients with viral hepatitis destroy hepatocyte, but its regulatory mechanism has not yet been described. Regulatory T cells (Tregs) inhibit activation of other immune cells and thus are important for homeostasis of the immune system.

However, recent studies contradictorily show that immune inhibitory functions of regulatory T cells weaken in inflammatory conditions and the cells secrete inflammatory cytokines in response. Meanwhile, such a phenomenon was not observed in viral hepatitis including types A, B and C.

Medical scientists at The Korea Advanced Institute of Science and Technology (Daejeon, Republic of Korea) analyzed blood samples collected from 63 patients with acute hepatitis A (AHA) at the time of hospitalization (and some at later time points) and 19 healthy donors in South Korea. Liver tissues were collected from patients with fulminant AHA during liver transplantation. Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood and lymphocytes were isolated from liver tissues and analyzed by flow cytometry. Cytokine production from Treg cells (CD4+CD25+Foxp3+) was measured by immunofluorescence levels following stimulation with anti-CD3 and anti-CD28. Epigenetic stability of Treg cells was determined based on DNA methylation patterns.

The scientists found a higher proportion of CD4+CD25+Foxp3+ Treg cells from patients with AHA, compared with controls, and produced tumor necrosis factor (TNF) upon stimulation with anti-CD3 and anti-CD28 (11.2% versus 2.8%). DNA methylation analysis confirmed the identity of the Treg cells. TNF-producing Treg cells had features of T-helper 17 cells, including upregulation of RAR-related orphan receptor gamma (RORγt), which was required for TNF production. The Treg cells had reduced suppressive functions compared to Treg cells from controls. The frequency of TNF-producing Treg cells in AHA patients’ blood correlated with their serum level of alanine aminotransferase.

The authors concluded that Treg cells from patients with AHA have altered functions, compared with Treg cells from healthy individuals. Treg cells from patients with AHA produce higher levels of TNF, gain features of T-helper 17 cells, and have reduced suppressive activity. The presence of these cells is associated with severe liver injury in patients with AHA. Eui-Cheol Shin, MD, PhD, a professor and senior author of the study, said, “This is the first study on regulatory T cells that contributes to hepatocyte damage in viral hepatitis. It is significant for identifying the cells and the molecules that can be used as effective treatment targets for viral hepatitis in the future.” The study was originally published online on December 8, 2017, in the journal Gastroenterology.

Related Links:
The Korea Advanced Institute of Science and Technology

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.