We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

By LabMedica International staff writers
Posted on 18 Mar 2024
Print article
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems. However, for individuals with certain underlying health conditions, these bacteria can lead to lung infections, showing symptoms similar to those of tuberculosis. Such infections can lead to chronic coughing, sometimes with blood, and scarring that increases susceptibility to respiratory infections like bronchitis and pneumonia. Diagnosing and treating these infections is a lengthy process due to the slow growth rate of the bacteria. With the number of NTM infection cases rising each year, partly due to climate change, there's a pressing need for quick and precise diagnostic methods. Researchers have now introduced a CRISPR-based testing platform capable of identifying NTM infections using blood samples, providing results in as little as two hours.

Researchers at Tulane University (New Orleans, LA, USA) developed the blood test specifically to detect mycobacteria avium complex (MAC), which is one of the most common types of NTM and the leading cause of NTM lung disease. The test works by identifying NTM DNA fragments in the blood. Unlike current diagnostic methods, which require growing the slow-developing bacteria over an extended period, this test offers a quicker solution. Considering there are over 190 species of NTM, identifying the correct infection can be challenging. The researchers demonstrated that their blood test successfully identified NTM infections in over 93% of affected patients. Going forward, the team plans to broaden the range of detectable NTM species using CRISPR and to develop tests that can be administered at the point of care for quicker NTM detection.

“NTM infection is highly underestimated, and due to the slow diagnosis of it, patients with NTM infection are not effectively treated,” said Bo Ning, assistant professor of molecular biology at Tulane University School of Medicine. “Importantly, our blood test can analyze NTM DNA fragments in the bloodstream, thereby inferring a drug response, which is crucial for rapidly determining treatment plans, capabilities traditional diagnostic approaches cannot achieve.”

“Not only can our blood test provide same-day results, this test can be quickly performed in any clinics where blood can be drawn and does not require specialized training or equipment needed to analyze bacteria cultures,” added Ning.

Related Links:
Tulane University

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Thyroid Stimulating Hormone Assay
Neonatal TSH ELISA Kit
New
Hematocrit Centrifuge
4088M1 - Zip Compact

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The LIAISON PLEX Gram-Negative Blood Culture Assay runs on the on the LIAISON PLEX instrument (Photo courtesy of Diasorin)

Molecular Multiplexing Panel for Blood Culture Identification Enables Targeted Treatment Decisions

Each year, approximately 250,000 patients in the US are diagnosed with bloodstream infections (BSIs). Sepsis resulting from BSIs has an average mortality rate of 16-40%, and any delays in initiating appropriate... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: International expert meeting for trends and innovations in laboratory medicine - the MEDICA LABMED FORUM at MEDICA (Photo courtesy of Constanze Tillmann/Messe Düsseldorf)

MEDICA LABMED FORUM 2024: International Experts Meet to Discuss Trending Topics in Laboratory Medicine

At MEDICA (Düsseldorf, Germany), the world’s premier trade fair for the healthcare industry and medical technology sector, this year’s event (November 11–14) will focus on the most exciting medical advancements.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.