We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




Rapid Test Diagnoses Tropical Disease within Hours for Faster Antibiotics Treatment

By LabMedica International staff writers
Posted on 14 Mar 2024

Melioidosis, a neglected tropical disease, is believed to affect around 165,000 individuals globally each year, with approximately 89,000 succumbing to it. More...

This illness is caused by the bacterium Burkholderia pseudomallei, which thrives in the soil and water of tropical and subtropical areas, gaining entry into humans through skin cuts, consumption, or inhalation. Diagnosing melioidosis poses challenges due to its varying symptoms ranging from localized infections and pneumonia to severe septicemia or prolonged chronic conditions. The disease's tendency to predominantly affect isolated rural communities contributes to its significant underreporting. Diagnosis traditionally depends on culturing bacterial specimens, a process extending over three to four days. Meanwhile, a large percentage of patients with melioidosis succumb to the disease, often within the initial 24 to 48 hours of hospital admission, while waiting for a diagnosis. Although no vaccine exists for melioidosis, it can be effectively managed with specific intravenous antibiotics if identified promptly. However, the current diagnostic delay leads to the initial administration of broad-spectrum antibiotics, unnecessarily extending treatment times and resource usage.

An international collaboration that included researchers from the Wellcome Sanger Institute (Cambridgeshire, UK) has led to the development of a rapid diagnostic test capable of identifying melioidosis within hours, significantly quicker than traditional methods. This advancement allows for the faster administration of appropriate antibiotics. Utilizing CRISPR technology, this new test identifies a Burkholderia pseudomallei-specific genetic marker with 93% sensitivity, offering a promise of higher survival rates through a rapid, globally applicable diagnostic solution. Developing this test involved the analysis of over 3,000 B. pseudomallei genomes, predominantly sequenced at the Sanger Institute, to identify a unique genetic target.

The designed test, CRISPR-BP34, enhances the DNA of the target bacterium through a recombinase polymerase amplification reaction, with a subsequent CRISPR reaction ensuring specificity. The presence of melioidosis is confirmed by a simple lateral flow 'dipstick' method. To validate this test, the team examined clinical samples from 114 melioidosis patients and 216 non-affected individuals from northeast Thailand, a melioidosis hotspot. The CRISPR-BP34 test demonstrated a 93% sensitivity rate, surpassing the 66.7% sensitivity of conventional bacterial culture techniques, and delivered results within four hours for urine, pus, and sputum samples, and within a day for blood samples, markedly faster than the current methods. This new rapid diagnostic test not only promises quicker diagnosis and treatment for melioidosis patients but also aims to conserve medical resources and reduce hospital stays by preventing the indiscriminate use of broad-spectrum antibiotics. The team is planning randomized clinical trials to further validate the test's effectiveness in hospitals and is exploring the influence of human genetics on melioidosis susceptibility and immune response.

“This research is a testament to international collaboration and how the application of genomics at scale leads to clinical intervention,” said Professor Nick Thomson, Head of Parasites and Microbes at the Wellcome Sanger Institute. “Using a genetic target mined from a bank of thousands of bacterial genomes, the team was able to produce an incredibly sensitive test that is specific to the bacterium behind melioidosis. I look forward to seeing the clinical impacts of this research.”

Related Links:
Wellcome Sanger Institute


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Serological Pipet Controller
PIPETBOY GENIUS
New
Respiratory Syncytial Virus Test
OSOM® RSV Test
New
Whole Blood Control
Lyphochek Whole Blood Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Switching to an experimental drug after liquid biopsy detection of breast cancer recurrence can improve outcomes (Photo courtesy of Shutterstock)

Treatment Switching Guided by Liquid Biopsy Blood Tests Improves Outcomes for Breast Cancer Patients

Standard treatment for patients with advanced estrogen receptor (ER)-positive, HER2-negative breast cancer, a subtype driven by estrogen receptors that fuel tumor growth, often involves aromatase inhibitors,... Read more

Pathology

view channel
Image: Microscopy image of invasive breast cancer cells degrading their underlying extracellular matrix (Photo courtesy of University of Turku)

Visualization Tool Illuminates Breast Cancer Cell Migration to Suggest New Treatment Avenues

Patients with breast cancer who progress from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) face a significantly worse prognosis, as metastatic disease remains incurable.... Read more

Technology

view channel
Image: The machine learning-based method delivers near-perfect survival estimates for PAC patients (Photo courtesy of Shutterstock)

AI Method Predicts Overall Survival Rate of Prostate Cancer Patients

Prostate adenocarcinoma (PAC) accounts for 99% of prostate cancer diagnoses and is the second most common cancer in men globally after skin cancer. With more than 3.3 million men in the United States diagnosed... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.