We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Colorimetric Test Devised for Tuberculosis in Developing Areas

By LabMedica International staff writers
Posted on 28 Dec 2015
Print article
Image: The ND-1000 spectrophotometer (Photo courtesy of NanoDrop).
Image: The ND-1000 spectrophotometer (Photo courtesy of NanoDrop).
A rapid, sensitive and low-cost method has been devised for detecting tuberculosis (TB), a highly infectious disease and a major global health problem, especially in countries with developing health care systems.

The typical way that physicians screen for TB, which is caused by the bacterium Mycobacterium tuberculosis (Mtb), is with a tuberculin skin test or an examination of a patient's sputum under a microscope. To weed out false positives, a more reliable test that involves growing Mtb cultures can be performed, but that requires weeks to complete.

Scientists at the Australian Institute for Bioengineering and Nanotechnology (St Lucia, QLD, Australia) and their colleagues began with a newly created nucleic acid amplification test that does not require expensive laboratory equipment to detect Mtb, but this modified test typically uses costly fluorescence technology to read the results. The team substituted the fluorescence detector with a colorimetric assay that changes to a blue hue if the infection is present, allowing health care workers to identify positive test results right away with the naked eye.

The team employed a modified Solid Phase Reversible Immobilization (SPRI) protocol) with Guanidium-HCl lysis buffer to sample for genomic DNA (gDNA) from Mtb cells. Nucleic acid amplification was performed with the TwistAmp Basic RPA Kit (TwistDx Limited; Cambridge, UK). They devised a simple colorimetric assay that utilizes the chemical oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by isothermally functionalized DNA targets as a sensitive and specific biosensor for the detection of tuberculosis. Absorbance was determined with the ND-1000spectrophotometer (NanoDrop; Wilmington, DE, USA). Ampometry responses were measured on a workstation potentiostat (CH Instruments; Austin, TX, USA).

The team demonstrated how the modified diagnostic could be put on cheap, disposable electrochemical sensors for increased sensitivity, even in the field. Because the assay is inexpensive, quick and highly specific for the Mtb bacterium, the scientists say it could have a big impact in low-resource communities. The assays are inexpensive at USD 3.00, takes only 75 minutes, sensitive as approaching a single cell, and highly specific to M. tuberculosis. The study was published on November 30, 2015, in the journal ACS Sensors.

Related Links:

Australian Institute for Bioengineering and Nanotechnology 
TwistDx Limited 
NanoDrop


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.