We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

BIO-RAD LABORATORIES

Provides full range of instrumentation, reagent kits, software and quality control systems to clinical laboratories. ... read more Featured Products: More products

Download Mobile App




Simple Method Monitors β-Cell Death in Type 1 Diabetes Individuals

By LabMedica International staff writers
Posted on 17 Feb 2015
Print article
Bio-Rad\'s QX100 Droplet Reader for Droplet Digital PCR system
QX100 Droplet Reader for Droplet Digital PCR system (Photo courtesy of BIO-RAD LABORATORIES)
The β-cell killing that characterizes type 1 diabetes (T1D) is thought to begin years before patients present clinically with metabolic decompensation; however, this primary pathologic process of the disease has not been measured.

The kinetics of disease progression is limited because there are no methods that directly measure β-cell death, but a method has been recently developed for assessing β-cell death in vivo by measuring the relative amount of β-cell-derived unmethylated insulin (INS) DNA in the circulation.

A team of scientists led by those at Yale University (New Haven, CT, USA) performed an observational study of 50 participants from two cohorts at risk for developing T1D from the TrialNet Pathway to Prevention study and of four subjects who received islet autotransplants. DNA was purified from serum samples using QIAamp DNA Blood Kits (Qiagen; Venlo, The Netherlands).

Analysis of β-cell death was carried out by measuring the levels of unmethylated INS DNA by droplet digital polymerase chain reaction (ddPCR). The DNA content of the droplets was analyzed with a QX100 Droplet Reader (Bio-Rad; Hercules, CA, USA). Plasma C-peptide levels were measured using the Tosoh AIA 1800 assay (Tokyo, Japan).

In at-risk subjects, those who progressed to T1D had average levels of unmethylated INS DNA that were elevated modestly compared with those of healthy control subjects. In at-risk individuals that progressed to T1D, the observed increases in unmethylated INS DNA were associated with decreases in insulin secretion, indicating that the changes in unmethylated INS DNA are indicative of β-cell killing. Subjects at high risk for T1D had levels of unmethylated INS DNA that were higher than those of healthy controls and higher than the levels of unmethylated INS DNA in the at-risk progressor and at-risk non-progressor groups followed for four years. Evaluation of insulin secretory kinetics also distinguished high-risk subjects who progressed to overt disease from those who did not.

The authors concluded that that a blood test that measures unmethylated INS DNA serves as a marker of active β-cell killing as the result of T1D-associated autoimmunity. Together, the data support the concept that β-cell killing occurs sporadically during the years prior to diagnosis of T1D and is more intense in the peridiagnosis period. The study was published on February 2, 2015, in the Journal of Clinical Investigation.

Related Links:

Yale University
Qiagen 
Bio-Rad


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.