We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Effectiveness of Chemotherapy Gauged by Optical Monitoring of Tumor Organoids

By LabMedica International staff writers
Posted on 09 Nov 2014
Print article
Image: Time sequence shows how the test differentiates between drug-resistant tumors, top, that continue to grow and tumors that respond to the treatment, bottom, that begin to shrink. Shades of blue indicate low levels of metabolic activity while yellow and orange represent high activity levels (Photo courtesy of Vanderbilt University).
Image: Time sequence shows how the test differentiates between drug-resistant tumors, top, that continue to grow and tumors that respond to the treatment, bottom, that begin to shrink. Shades of blue indicate low levels of metabolic activity while yellow and orange represent high activity levels (Photo courtesy of Vanderbilt University).
Laser-modulated optical metabolic imaging of organoids derived from primary breast tumors can gauge the therapeutic response of the cancer to antitumor drugs.

Investigators at Vanderbilt University (Nashville, TN, USA) generated organoids from primary breast tumors by growing biopsy specimens from the tumors in a nutrient-rich collagen gel that enabled the tumor to retain its three-dimensional structure and included supporting cells from the primary tumor's microenvironment.

Fluorescence imaging was used to monitor the metabolic state of the organoids. This technique utilized a laser that caused two key metabolic enzymes, FAD (flavin adenine dinucleotide) and NADH (nicotinamide-adenine dinucleotide) in the cells to fluoresce, with the strength of the fluorescence dependent on the health of the organoid.

The method was tested extensively in mice and with six samples of human breast tumors using four anticancer drugs commonly used to treat breast cancer and two experimental drugs. Results revealed that as early as 24 hours after treatment with the anticancer drug, the optical metabolic imaging index of responsive organoids decreased and was further reduced when effective therapies were combined, with no change in drug-resistant organoids. Drug response in mouse xenograft-derived organoids was validated with tumor growth measurements in vivo and staining for proliferation and apoptosis.

Senior author Dr. Melissa C. Skala, assistant professor of biomedical engineering at Vanderbilt University, said: "We hit the tumor with a punch and see how it responds. It is cheap and fast and adaptable to high-throughput screening so it can be used to test dozens of drugs or drug combinations at the same time. We hope that our test will significantly improve the odds of survival of breast cancer patients by allowing doctors to identify the most effective but least toxic form of chemotherapy for each individual patient before the treatment begins.”

The study was published in the September 15, 2014, issue of the journal Cancer Research.

Related Links:

Vanderbilt University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.