We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Multiple Pathogens Detected Using Luminescent Nanocrystal Tags

By LabMedica International staff writers
Posted on 14 May 2014
Print article
Luminescent nanocrystals and a high-speed scanner enable rapid detection of multiple pathogens in a single test.

A research team using tunable luminescent nanocrystals as tags to advance medical and security imaging have successfully applied them to high-speed scanning technology and detected multiple viruses within minutes. The team previously developed a way to control the length of time light from a luminescent nanocrystal lingers, which introduced the dimension of time in addition to color and brightness in optical detection technology. Detection based on the lifetime of the light from a nanocrystal as well as its specific color, exponentially increases the possible combinations and unique tags that could be created for biomedical screens.

The research, led by Macquarie University (Sydney, Australia) and Purdue University West Lafayette, IN, USA) follows the team's earlier success in developing a way to control the length of time light from a luminescent nanocrystal lingers, which introduced the dimension of time in addition to color and brightness in optical detection technology.

Detection based on the lifetime of the light from a nanocrystal as well as its specific color exponentially increases the possible combinations and unique tags that could be created for biomedical screens.

Yiqing Lu, a researcher at Macquarie University, who led the research explained, "We now are able to build a huge library of lifetime color-coded microspheres to perform multiple medical tasks or diagnoses at the same time. The time saved by omitting the need to grow or amplify a culture sample for testing and eliminating the need to run multiple tests will save future patients precious time so treatment can begin, which can be life-saving when managing aggressive diseases."

The technology could enable screens that identify thousands of different target molecules simultaneously, said J. Paul Robinson, the professor of Cytomics in Purdue's College of Veterinary Medicine and professor in Purdue's Weldon School of Biomedical Engineering, who was involved in the research.

"This is the second part of the puzzle," said Prof. Robinson, who led the biological testing of the technology. "Now [we have] successfully measured the lifetimes of these tags on the fly at thousands of samples per second. The next step is to perform such high-throughput testing within a liquid, like water, blood or urine. That will open the door to widespread biological use and clinical applications, as well as the detection of pathogens in food or water."

Robinson's research focuses on flow cytometry, the analysis of cells that are contained in a liquid flowing past a laser beam. In addition to developing instrumentation to measure the tags, he plans to explore the technology's health care and biodetection applications.

The research team attached unique tags to DNA strands of HIV, Ebolavirus, Hepatitis B virus, and Human Papillomavirus 16. The tags were accurately read and distinguished at high speeds in suspension arrays. The team's work is described online in Nature Communications.

Related Links:

Macquarie University
Purdue University West Lafayette


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.