We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

02 Jun 2025 - 04 Jun 2025
11 Jun 2025 - 13 Jun 2025

Smartphone-Controlled Microfluidic Device Enables Rapid Influenza Detection

By LabMedica International staff writers
Posted on 15 Jul 2024

The influenza virus represents a significant public health concern, annually causing epidemics with high morbidity and mortality rates. More...

The virus is known for its high mutation rate and the existence of multiple subtypes, which require varied clinical approaches. Consequently, there is a critical need for an accurate, rapid, and portable method to differentiate between influenza virus subtypes to manage virus transmission and inform clinical treatment decisions. Researchers have now developed a spatial encoding of a centrifugal microfluidic disc-integrated smartphone-controlled (SEDphone) platform for detecting influenza virus subtypes.

In a study, researchers from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences (Anhui, China) developed a novel approach that combines Loop-mediated Isothermal Amplification (LAMP) with CRISPR/Cas12a technologies for rapid and accurate detection of various influenza viruses. This method amplifies target sequences using LAMP and detects them through CRISPR/Cas12a-mediated trans-cleavage activity, thus cleaving reporter probes and emitting fluorescent signals. This technique is highly sensitive and reduces the occurrence of false positives. To aid the detection of different influenza strains, the researchers devised a flexible model capable of targeting multiple flu types. Following optimization, this method can identify five influenza types (H1N1, H3N2, H5N1, H7N9, and Influenza B) within 45 minutes, even at low viral concentrations (10 copies/μL).

Furthermore, to facilitate simultaneous LAMP amplification and CRISPR detection, the team engineered a centrifugal microfluidic chip with spatial encoding features. They also developed a portable testing device, dubbed SEDphone, which operates via smartphone control. This device can simultaneously amplify and detect multiple influenza virus types. Incorporating a dual temperature zone design, it addresses the temperature variance required for both technologies. Clinical sample testing confirmed that this innovative method and the SEDphone device are effective in rapidly identifying various influenza subtypes. The research results were published in Sensors and Actuators: B. Chemical.

"Our research offers a new way to quickly and accurately detect various pathogens in real-time. This method can be used in fever clinics or at home, helping to reduce the risk of unnecessary cross-infection and easing the burden on healthcare systems," said Dr. ZHU Cancan, a member of the research team.

Related Links:
Hefei Institutes of Physical Science


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Gold Member
Latex Test
SLE-Latex Test
New
Urine Drug Test
Instant-view® Phencyclidine Urine Drug Test
New
Silver Member
Cell and Tissue Culture Plastics
Diamond® SureGro™ Cell and Tissue Culture Plastics
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Custom hardware and software for the real-time detection of immune cell biophysical signatures in NICU (Photo courtesy of Pediatric Research, DOI:10.1038/s41390-025-03952-y)

First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop

Premature infants are highly susceptible to severe and life-threatening conditions, such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis, which is a bloodstream infection occurring in the... Read more

Pathology

view channel
Image: The new tool is designed for accurate detection of structural variations in clinical samples (Photo courtesy of Karen Arnott/EMBL-EBI and Isabel Romero Calvo/EMBL)

ML Algorithm Accurately Identifies Cancer-Specific Structural in Long-Read DNA Sequencing Data

Long-read sequencing technologies are designed to analyze long, continuous stretches of DNA, offering significant potential to enhance researchers' abilities to detect complex genetic changes in cancer genomes.... Read more

Technology

view channel
Image: Concept of biosensor integrated into hygiene pads enabling direct semi-quantitative analysis of biomarkers in unprocessed menstruation blood (Photo courtesy of Dosnon, L et al. DOI: 10.1002/advs.202505170)

First Ever Technology Recognizes Disease Biomarkers Directly in Menstrual Blood in Sanitary Towels

Over 1.8 billion people menstruate worldwide, yet menstrual blood has been largely overlooked in medical practice. This blood contains hundreds of proteins, many of which correlate with their concentration... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.