We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Portable Rapid Diagnostic Assay Identifies Hemorrhaging Patients Using Small Blood Sample

By LabMedica International staff writers
Posted on 29 Aug 2023

Hemorrhaging occurs when blood vessels are damaged due to a traumatic event, leading to either visible external or hidden internal bleeding. More...

While external bleeding is easily detectable, internal bleeding, also referred to as internal hemorrhaging, remains hidden from plain sight. Diagnosing internal bleeding demands clinical suspicion and subsequent assessment. Within hospital settings, advanced imaging can confirm these assessments, enabling timely surgical intervention to save lives. However, current methods for detecting hemorrhage are insufficient and require skilled operators, presenting significant diagnostic challenges. Now, a revolutionary internal hemorrhage diagnostic tool could change all that.

DioTeX Diagnostics (Baltimore, MD, USA), comprising a team of undergraduate biomedical engineers from Johns Hopkins University (Baltimore, MD, USA), is developing a portable, dependable, and accessible internal hemorrhage diagnostic tool. Their approach involves using a specific biomarker associated with hemorrhage to create a rapid immunochemistry-based test. By analyzing a small blood sample, this tool can swiftly identify patients with internal bleeding. This test has the potential to revolutionize internal hemorrhage diagnosis, as it can be conducted accurately and consistently by individuals with minimal training. This innovation holds the promise of faster and more appropriate hemorrhage care, potentially saving thousands of lives annually.

DioTeX has built a prototype of its portable rapid diagnostic assay designed to detect blood biomarkers linked to trauma-induced hemorrhage. This advancement aims to enhance the evaluation and management of internal trauma. Using the device, critical diagnostic results can be obtained and interpreted by anyone, regardless of location. To utilize the device, a blood sample is collected from behind the ear of a patient who may be experiencing internal bleeding. This process employs DioTeX's proprietary blood drawing mechanism. After approximately 5 minutes, users can interpret the test device's reading. A single line indicates no hemorrhage, while two lines indicate the presence of bleeding. The testing device requires minimal training, making it practical for use in settings with limited resources and in rural areas.

Related Links:
DioTeX Diagnostics 
Johns Hopkins University 


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Clinical Chemistry System
P780
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.