We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Machine Learning Tool Enables AI-Assisted Diagnosis of Immunological Diseases

By LabMedica International staff writers
Posted on 21 Feb 2025

Traditional diagnostic methods for autoimmune diseases and other immunological conditions typically combine physical examinations, patient history, and laboratory tests to detect cellular or molecular abnormalities. More...

However, this process is often time-consuming and complicated by misdiagnoses and ambiguous symptoms. These methods generally do not take full advantage of data from the patient’s adaptive immune system, particularly from B cell receptors (BCRs) and T cell receptors (TCRs). In response to infections, vaccines, and other antigenic stimuli, BCR and TCR repertoires are altered through clonal expansion, somatic mutation, and the reshaping of immune cell populations. Sequencing these immune receptors has the potential to provide a more comprehensive diagnostic tool, enabling the detection of infectious, autoimmune, and immune-mediated diseases in one test. However, it remains uncertain how reliably and broadly immune receptor repertoire sequencing can classify diseases on its own.

A team of researchers at Stanford University (Stanford, CA, USA) has created an innovative machine learning framework called Mal-ID that can interpret an individual’s immune system record of past infections and diseases. This model provides a promising new tool for diagnosing autoimmune disorders, viral infections, and vaccine responses with precision. Mal-ID, which stands for MAchine Learning for Immunological Diagnosis, is a three-model framework that analyzes immune receptor datasets to identify patterns associated with infectious diseases, autoimmune conditions, and vaccine responses. The model was trained using BCR and TCR data collected from 593 individuals, including patients with COVID-19, HIV, type-1 diabetes, as well as individuals who received the influenza vaccine and healthy controls.

The findings, published in Science, demonstrate that Mal-ID successfully identified six distinct disease states in 550 paired BCR and TCR samples, achieving a multiclass AUROC score of 0.986, which indicates exceptionally high classification accuracy. This score reflects the model’s ability to accurately rank positive cases above negative ones across various disease comparisons. The model’s ability to distinguish between conditions such as COVID-19, HIV, lupus, type-1 diabetes, and healthy controls highlights its potential as a powerful diagnostic tool. However, the researchers noted that further refinement, incorporating clinical information, is necessary before the approach can be reliably used in clinical settings.


New
Gold Member
Latex Test
SLE-Latex Test
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Myocardial Infarction Test
Quidel Triage Cardio3 Panel
New
STI Test
RIDA GENE STI Mycoplasma Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.