We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Machine Learning Tool Enables AI-Assisted Diagnosis of Immunological Diseases

By LabMedica International staff writers
Posted on 21 Feb 2025

Traditional diagnostic methods for autoimmune diseases and other immunological conditions typically combine physical examinations, patient history, and laboratory tests to detect cellular or molecular abnormalities. More...

However, this process is often time-consuming and complicated by misdiagnoses and ambiguous symptoms. These methods generally do not take full advantage of data from the patient’s adaptive immune system, particularly from B cell receptors (BCRs) and T cell receptors (TCRs). In response to infections, vaccines, and other antigenic stimuli, BCR and TCR repertoires are altered through clonal expansion, somatic mutation, and the reshaping of immune cell populations. Sequencing these immune receptors has the potential to provide a more comprehensive diagnostic tool, enabling the detection of infectious, autoimmune, and immune-mediated diseases in one test. However, it remains uncertain how reliably and broadly immune receptor repertoire sequencing can classify diseases on its own.

A team of researchers at Stanford University (Stanford, CA, USA) has created an innovative machine learning framework called Mal-ID that can interpret an individual’s immune system record of past infections and diseases. This model provides a promising new tool for diagnosing autoimmune disorders, viral infections, and vaccine responses with precision. Mal-ID, which stands for MAchine Learning for Immunological Diagnosis, is a three-model framework that analyzes immune receptor datasets to identify patterns associated with infectious diseases, autoimmune conditions, and vaccine responses. The model was trained using BCR and TCR data collected from 593 individuals, including patients with COVID-19, HIV, type-1 diabetes, as well as individuals who received the influenza vaccine and healthy controls.

The findings, published in Science, demonstrate that Mal-ID successfully identified six distinct disease states in 550 paired BCR and TCR samples, achieving a multiclass AUROC score of 0.986, which indicates exceptionally high classification accuracy. This score reflects the model’s ability to accurately rank positive cases above negative ones across various disease comparisons. The model’s ability to distinguish between conditions such as COVID-19, HIV, lupus, type-1 diabetes, and healthy controls highlights its potential as a powerful diagnostic tool. However, the researchers noted that further refinement, incorporating clinical information, is necessary before the approach can be reliably used in clinical settings.


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
New
Homocysteine Quality Control
Liquichek Homocysteine Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Immunology

view channel
Image: The simple blood marker can predict which lymphoma patients will benefit most from CAR T-cell therapy (Photo courtesy of Shutterstock)

Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy

CAR T-cell therapy has transformed treatment for patients with relapsed or treatment-resistant non-Hodgkin lymphoma, but many patients eventually relapse despite an initial response. Clinicians currently... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.