We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New AI Technology Outperforms Traditional Methods in Biomedical Image Segmentation

By LabMedica International staff writers
Posted on 28 Nov 2024

Spatial omics is an emerging field that integrates molecular profiling techniques like genomics, transcriptomics, and proteomics with spatial information, enabling researchers to pinpoint the location of various molecules within cells in complex tissues. More...

This approach offers valuable insights into the cellular mechanisms behind disease development and progression, which is crucial for improving diagnostics and advancing targeted therapies, a central focus in translational research. Spatial omics allows the study of diseases like cancer and chronic kidney disease by revealing how cellular interactions and microenvironments influence disease progression and therapeutic responses. The first step in analyzing spatial omics data involves tasks such as cell segmentation, which defines cell boundaries, and classification, which assigns cell types. Recent advancements in spatial omics technologies enable the examination of intact tissues at the cellular level, providing unparalleled insights into the relationship between cellular architecture and the function of different tissues and organs.

With the increasing volume of spatial omics data, there is a growing demand for advanced computational tools for analysis. In response, researchers at Children’s Hospital of Philadelphia (CHOP, Philadelphia, PA, USA) have developed an artificial intelligence (AI) technology called CelloType, a comprehensive model designed to improve the accuracy of cell identification and classification in high-content tissue images. CHOP is involved in prominent projects such as the Human Tumor Atlas Network, the Human BioMolecular Atlas Program (HuBMAP), and the BRAIN initiative, which use similar technologies to map the spatial organization of both healthy and diseased tissues. The CelloType model utilizes transformer-based deep learning, a type of AI that automates complex, high-dimensional data analysis. Deep learning enables the model to identify complex relationships and context, making it highly effective for natural language processing and image analysis tasks. The model is optimized to enhance accuracy in cell detection, segmentation, and classification.

In their study, the researchers compared the performance of CelloType against various traditional methods using datasets from both animal and human tissues. Traditional approaches typically follow a two-stage process of segmentation followed by classification, which can be inefficient and inaccurate. In contrast, CelloType employs a multi-task learning strategy that integrates both segmentation and classification in one step, improving efficiency and accuracy. CelloType also outperformed existing segmentation methods across different types of images, including natural images, bright light images, and fluorescence images. For cell type classification, the study, published in Nature Methods, demonstrated that CelloType surpassed a model made up of state-of-the-art individual methods and a high-performance instance segmentation model, which uses AI to precisely outline objects in an image. Additionally, using a multiplexed tissue image—a type of advanced biomedical image that displays multiple biomarkers in a single tissue sample—researchers showcased how CelloType can perform multi-scale segmentation and classification of both cellular and non-cellular components within a tissue. This capability allows for more detailed analysis of both small and large cell structures, significantly expediting the process.

"We are just beginning to unlock the potential of this technology," said Kai Tan, PhD, the study's lead author and a professor in the Department of Pediatrics at CHOP. "This approach could redefine how we understand complex tissues at the cellular level, paving the way for transformative breakthroughs in healthcare."


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Human Estradiol Assay
Human Estradiol CLIA Kit
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.