We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Technology Breakthrough in Deep Light Imaging to Improve Disease Diagnosis

By LabMedica International staff writers
Posted on 13 Jul 2023
Print article
Image: New deep light imaging could improve disease diagnosis (Photo courtesy of Freepik)
Image: New deep light imaging could improve disease diagnosis (Photo courtesy of Freepik)

Optical coherence tomography (OCT), an important form of light imaging, operates on the principle of light backscattering within the sample under observation, similar to how light gets scattered in fog due to water droplets possessing different refractive indices than the air. Just as the scattering makes it hard to see through fog, the scattering by cellular components and smaller constituents in biological tissue also complicates imaging tasks. Specifically, acquiring a clear signal from depths surpassing 1mm presents significant difficulties, chiefly because of intervening tissue. Now, a technological breakthrough in OCT is set to revolutionize applications in fields like ophthalmology, dermatology, cardiology, and early cancer detection, as well as improve disease diagnosis.

Traditional understanding holds that the OCT signal is largely influenced by light that has experienced a single backscattering event, while light that has been scattered numerous times hampers image creation. An international team of researchers, in collaboration with the University of St Andrews (Scotland, UK), have uncovered a contrasting perspective. They suggest that selectively gathering multiply scattered light could enhance image contrast at depth, especially in highly scattering samples. The researchers further demonstrated how this technique could be applied in a simple way with minimal additional optics, by shifting the light delivery and collection pathways. The team is confident that their ground-breaking discovery has the potential to challenge existing conventions and bring about a significant shift in retrieving images at depth.

“The unique configuration, supported by our modeling, should redefine our view on OCT signal formation – and we can now use this insight to extract more information and to improve diagnosis of disease,” said Dr. Peter Andersen, co-corresponding author from Technical University of Denmark.

Related Links:
University of St Andrews 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.