We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App

Technology Breakthrough in Deep Light Imaging to Improve Disease Diagnosis

By LabMedica International staff writers
Posted on 13 Jul 2023
Print article
Image: New deep light imaging could improve disease diagnosis (Photo courtesy of Freepik)
Image: New deep light imaging could improve disease diagnosis (Photo courtesy of Freepik)

Optical coherence tomography (OCT), an important form of light imaging, operates on the principle of light backscattering within the sample under observation, similar to how light gets scattered in fog due to water droplets possessing different refractive indices than the air. Just as the scattering makes it hard to see through fog, the scattering by cellular components and smaller constituents in biological tissue also complicates imaging tasks. Specifically, acquiring a clear signal from depths surpassing 1mm presents significant difficulties, chiefly because of intervening tissue. Now, a technological breakthrough in OCT is set to revolutionize applications in fields like ophthalmology, dermatology, cardiology, and early cancer detection, as well as improve disease diagnosis.

Traditional understanding holds that the OCT signal is largely influenced by light that has experienced a single backscattering event, while light that has been scattered numerous times hampers image creation. An international team of researchers, in collaboration with the University of St Andrews (Scotland, UK), have uncovered a contrasting perspective. They suggest that selectively gathering multiply scattered light could enhance image contrast at depth, especially in highly scattering samples. The researchers further demonstrated how this technique could be applied in a simple way with minimal additional optics, by shifting the light delivery and collection pathways. The team is confident that their ground-breaking discovery has the potential to challenge existing conventions and bring about a significant shift in retrieving images at depth.

“The unique configuration, supported by our modeling, should redefine our view on OCT signal formation – and we can now use this insight to extract more information and to improve diagnosis of disease,” said Dr. Peter Andersen, co-corresponding author from Technical University of Denmark.

Related Links:
University of St Andrews 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article


Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more


view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more


view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more


view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.