We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App




Different Subtypes Defined in Small Cell Lung Cancer

By LabMedica International staff writers
Posted on 25 May 2022
Print article
Image: UltiMate 3000 RSLCnano System: this low-flow liquid chromatography system has a wide flow-pressure footprint with nano-, capillary-, and micro-flow options (Photo courtesy of Thermo Fisher Scientific)
Image: UltiMate 3000 RSLCnano System: this low-flow liquid chromatography system has a wide flow-pressure footprint with nano-, capillary-, and micro-flow options (Photo courtesy of Thermo Fisher Scientific)

Small cell lung cancer (SCLC) is a malignant disease associated with a particularly high mortality rate. SCLC is a particularly aggressive cancer that typically occurs in smokers, exhibiting rapid growth and a high propensity for metastasis.

Recent studies suggest that SCLC may be differentiated into specific molecular subtypes. However, due to the significant lack of tumor material and the problem of tumor heterogeneity, this information could not be effectively validated in a clinical setting.

A large international team of clinical scientists led by the Medical University of Vienna (Vienna, Austria) examined 386 Central European cases, one of the largest cohorts of surgically treated patients to date. The expression of subtype-specific transcription factors and P53 and RB1 proteins were measured by immunohistochemistry (IHC) in the surgically resected SCLC samples. Signal amplification was performed using Novolink Polymer Detection System kit (Leica Biosystems, Wetzlar, Germany).

Correlations between subtype-specific proteins and in vitro efficacy of various therapeutic agents were investigated by proteomics and cell viability assays in 26 human SCLC cell lines. The team also comprehensively profiled protein expression using mass spectrometry-based proteomics in SCLC cell lines to assess the therapeutic relevance of each SCLC subtype. The nLC-MS/MS analysis was performed on an Ultimate 3000 RSLC nano pump (Thermo Fisher Scientific, Waltham, MA, USA) coupled to a Q-Exactive HF-X mass spectrometer equipped with an EASY-Spray ion source.

The investigators reported that besides SCLC-A (ASCL1-dominant), SCLC-AN (combined ASCL1/NEUROD1), SCLC-N (NEUROD1-dominant) and SCLC-P (POU2F3-dominant), IHC and cluster analyses identified a quadruple-negative SCLC subtype (SCLC-QN). No unique YAP1-subtype was found. The highest overall survival rates were associated with non-neuroendocrine subtypes (SCLC-P and SCLC-QN) and the lowest with neuroendocrine subtypes (SCLC-A, SCLC-N, SCLC-AN).

In univariate analyses, high ASCL1 expression was associated with poor prognosis and high POU2F3 expression with good prognosis. Notably, high ASCL1 expression influenced survival outcomes independently of other variables in a multivariate model. High POU2F3 and YAP1 protein abundances correlated with sensitivity and resistance to standard-of-care chemotherapeutics, respectively. Specific correlation patterns were also found between the efficacy of targeted agents and subtype-specific protein abundances.

Zsolt Megyesfalvi, MD, a Thoracic Surgeon and first author of the study, said, “In contrast to the increasingly personalized approaches observed in non-small cell lung cancer, SCLC is still considered to be a homogeneous clinical picture and is treated in a standardized way both in hospitals and laboratories. We are now showing that differential expression of key transcriptional regulators clearly distinguishes five major SCLC subtypes.”

The author concluded that they have investigated the clinicopathological relevance of SCLC molecular subtypes in a large cohort of surgically resected specimens. Differential IHC expression of ASCL1, NEUROD1 and POU2F3 defines SCLC subtypes. No YAP1-subtype can be distinguished by IHC. The study was published on April 30, 2022 in The Journal of Pathology.

Related Links:
Medical University of Vienna 
Leica Biosystems 
Thermo Fisher Scientific 

New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TRAb Immunoassay
Chorus TRAb
New
Hemoglobin/Haptoglobin Assay
IDK Hemoglobin/Haptoglobin Complex ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.