We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Blood-Based MicroRNA Signatures Distinguishes Individuals with Lung Cancer

By LabMedica International staff writers
Posted on 16 Mar 2020
The overall low survival rate of patients with lung cancer calls for improved detection tools to enable better treatment options and improved patient outcomes. More...
Lung cancer affects about 228,000 people a year in the USA and has a five-year survival rate just shy of 20%.

Multivariable molecular signatures, such as blood-borne microRNA (miRNA) signatures, may have high rates of sensitivity and specificity but require additional studies with large cohorts and standardized measurements to confirm the generalizability of miRNA signatures. MicroRNA signatures appear to distinguish individuals with lung cancer from those with other lung diseases as well as from those without a lung condition.

A large team of scientists collaborating with Saarland University (Saarbrücken, Germany) investigated the use of blood-borne miRNAs as potential circulating markers for detecting lung cancer in an extended cohort of symptomatic patients and control participants. Clinical diagnoses were obtained for 3,046 patients (606 patients with non–small cell and small cell lung cancer, 593 patients with non-tumor lung diseases, 883 patients with diseases not affecting the lung, and 964 unaffected control participants). The team calculated the sensitivity and specificity of liquid biopsy using miRNA signatures for detection of lung cancer. Blood samples collected from the participants underwent genome-wide miRNA profiling using human miRNA microarrays.

The investigators split their cohort into equal-sized training and validation sets. Within the training set, they uncovered a 15-miRNA signature that could distinguish patients with lung cancer from all other individuals. In the validation set, this signature could diagnose lung cancer with an accuracy of 91.4%, a sensitivity of 82.8%, and a specificity of 93.5%. Similarly, they uncovered a 14-miRNA signature that could distinguish patients with lung cancer from those with a non-tumor lung disease with 92.5% accuracy, 96.4% sensitivity, and 88.6% specificity. A third signature of 14 miRNAs could distinguish patients with early-stage lung cancer from all other patients with an accuracy of 95.9%, a sensitivity of 76.3%, and a specificity of 97.5%. Although the team focused on general lung cancer biomarkers, they noted that the miRNA hsa-miR-30a-5p was best able to tell small cell lung cancer and non-small cell lung cancer apart.

The authors concluded that their study suggested that the identified patterns of miRNAs may be used as a component of a minimally invasive lung cancer test, complementing imaging, sputum cytology, and biopsy tests. The study was published on March 5, 2020 in the journal JAMA Oncology.

Related Links:
Saarland University


Gold Member
Hematology Analyzer
Medonic M32B
Collection and Transport System
PurSafe Plus®
Rapid Molecular Testing Device
FlashDetect Flash10
Pipette
Accumax Smart Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The tool enables scientists to track real-time fluctuations in T cell function with unprecedented speed and precision (Photo courtesy of Shutterstock)

Luminescent Probe Measures Immune Cell Activity in Real Time

The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more

Industry

view channel
Image: The collaboration supports clinical validation and regulatory submissions of the new T1D 4-plex assay on Revvity’s GSP instrument (Photo courtesy of Revvity)

Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes

Type 1 diabetes (T1D) is a lifelong autoimmune condition in which the immune system destroys the pancreas’s insulin-producing beta cells, leading to dependence on insulin therapy. Early detection is critical... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.