We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Novel Technique Captures Plasma Cells from Myeloma Patients

By LabMedica International staff writers
Posted on 27 Apr 2017
Multiple myeloma is a cancer of the plasma cells, which are white blood cells produced in bone marrow that churn out antibodies to help fight infection. More...
When plasma cells become cancerous, they produce abnormal proteins, and the cells can build up in bone marrow, ultimately seeping into the bloodstream.

The disease is typically diagnosed through a bone marrow biopsy, in which a needle is inserted near a patient's hipbone to suck out a sample of bone marrow, which is a painful process for many patients. Clinicians can then isolate and analyze the plasma cells in the bone marrow sample to determine if they are cancerous.

Bioengineers at the Massachusetts Institute of Technology and their colleagues collected both peripheral blood and bone marrow (BM) in EDTA tubes from newly diagnosed myeloma patients. For studies with clinical blood samples from patients, capture, washing, and CD138 antibody labelling were performed. For studies involving BM, samples were passed through 100-μm nylon cell strainer to remove debris before being introduced to the capture chip. After the capture experiment, the same washing and labelling steps were followed.

The team used a microfluidic herringbone design to capture circulating plasma cells. They coated the channels of a microchip, about the size of a glass slide, with CD138, an antibody that is also expressed on the membranes of plasma cells. The team then streamed 1 mL samples of blood through the device. The herringbone grooves circulated the blood in the microfluidic channels, where the antibodies, acting as tiny Velcro pads, grabbed onto any passing plasma cells while letting the rest of the blood flow out of the device.

After counting the number of cells captured in each sample, they observed very low numbers of circulating plasma cells in healthy samples, about two to five cells/mL of blood, versus substantially higher counts in patients diagnosed with multiple myeloma, of about 45 to 184 cells/mL. The team also analyzed the captured plasma cells to determine the type of antibodies they produced. The scientists noted that patients who were in remission exhibited higher counts of circulating plasma cells than healthy donors. These same patients had shown normal ratios of kappa- and lambda-type antibodies in conventional blood tests.

Rohit Karnik, PhD, an associate professor and co-author of the study said, “We can capture and stain these cells in the device, which opens the possibility of studying whether there are new mutations in the cells. With cancers like multiple myeloma, even for patients in remission, cancer can recur. Detecting the level or mutation of plasma cells in blood might provide an early detection method for these patients.” The study was published on April 4, 2017, in the journal Scientific Reports.


New
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Collection and Transport System
PurSafe Plus®
Rapid Molecular Testing Device
FlashDetect Flash10
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.